Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38585878

RESUMO

Antisense therapeutics such as splice-modulating antisense oligonucleotides (ASOs) are promising tools to treat diseases caused by splice-altering intronic variants. However, their testing in animal models is hampered by the generally poor sequence conservation of the intervening sequences between human and other species. Here we aimed to model in the mouse a recurrent, deep-intronic, splice-activating, COL6A1 variant, associated with a severe form of Collagen VI-related muscular dystrophies (COL6-RDs), for the purpose of testing human-ready antisense therapeutics in vivo. The variant, c.930+189C>T, creates a donor splice site and inserts a 72-nt-long pseudoexon, which, when translated, acts in a dominant-negative manner, but which can be skipped with ASOs. We created a unique humanized mouse allele (designated as "h"), in which a 1.9 kb of the mouse genomic region encoding the amino-terminus (N-) of the triple helical (TH) domain of collagen a1(VI) was swapped for the human orthologous sequence. In addition, we also created an allele that carries the c.930+189C>T variant on the same humanized knock-in sequence (designated as "h+189T"). We show that in both models, the human exons are spliced seamlessly with the mouse exons to generate a chimeric mouse-human collagen a1(VI) protein. In homozygous Col6a1 h+189T/h+189T mice, the pseudoexon is expressed at levels comparable to those observed in heterozygous patients' muscle biopsies. While Col6a1h/h mice do not show any phenotype compared to wildtype animals, Col6a1 h/h+189T and Col6a1 h+189T/h+189T mice have smaller muscle masses and display grip strength deficits detectable as early as 4 weeks of age. The pathogenic h+189T humanized knock-in mouse allele thus recapitulates the pathogenic splicing defects seen in patients' biopsies and allows testing of human-ready precision antisense therapeutics aimed at skipping the pseudoexon. Given that the COL6A1 N-TH region is a hot-spot for COL6-RD variants, the humanized knock-in mouse model can be utilized as a template to introduce other COL6A1 pathogenic variants. This unique humanized mouse model thus represents a valuable tool for the development of antisense therapeutics for COL6-RDs.

2.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35428704

RESUMO

Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow (BM) and represents the second most common hematological malignancy in the world. The MM tumor microenvironment (TME) within the BM niche consists of a wide range of elements which play important roles in supporting MM disease progression, survival, proliferation, angiogenesis, as well as drug resistance. Together, the TME fosters an immunosuppressive environment in which immune recognition and response are repressed. Macrophages are a central player in the immune system with diverse functions, and it has been long established that macrophages play a critical role in both inducing direct and indirect immune responses in cancer. Tumor-associated macrophages (TAMs) are a major population of cells in the tumor site. Rather than contributing to the immune response against tumor cells, TAMs in many cancers are found to exhibit protumor properties including supporting chemoresistance, tumor proliferation and survival, angiogenesis, immunosuppression, and metastasis. Targeting TAM represents a novel strategy for cancer immunotherapy, which has potential to indirectly stimulate cytotoxic T cell activation and recruitment, and synergize with checkpoint inhibitors and chemotherapies. In this review, we will provide an updated and comprehensive overview into the current knowledge on the roles of TAMs in MM, as well as the therapeutic targets that are being explored as macrophage-targeted immunotherapy, which may hold key to future therapeutics against MM.


Assuntos
Mieloma Múltiplo , Macrófagos Associados a Tumor , Biologia , Humanos , Imunoterapia , Mieloma Múltiplo/tratamento farmacológico , Neovascularização Patológica , Microambiente Tumoral
3.
Leuk Res Rep ; 16: 100268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34584838

RESUMO

CD47 is a surface glycoprotein expressed by host cells to impede phagocytosis upon binding to macrophage SIRPα, thereby represents an immune checkpoint known as the "don't-eat-me" signal. However, accumulating evidence shows that solid and hematologic tumor cells overexpress CD47 to escape immune surveillance. Thus, targeting the CD47-SIRPa axis by limiting the activity of this checkpoint has emerged as a key area of research. In this review, we will provide an update on the landscape of CD47-targeting antibodies for hematological malignancies, including monoclonal and bi-specific antibodies, with a special emphasis on agents in clinical trials and novel approaches to overcome toxicity.

4.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201007

RESUMO

MM is the second most common hematological malignancy and represents approximately 20% of deaths from hematopoietic cancers. The advent of novel agents has changed the therapeutic landscape of MM treatment; however, MM remains incurable. T cell-based immunotherapy such as BTCEs is a promising modality for the treatment of MM. This review article discusses the advancements and future directions of BTCE treatments for MM.

5.
Oncotarget ; 12(19): 1878-1885, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34548905

RESUMO

Acute myeloid leukemia (AML) is the most common type of leukemia and has a 5-year survival rate of 25%. The standard-of-care for AML has not changed in the past few decades. Promising immunotherapy options are being developed for the treatment of AML; yet, these regimens require highly laborious and sophisticated techniques. We create nanoTCEs using liposomes conjugated to monoclonal antibodies to enable specific binding. We also recreate the bone marrow niche using our 3D culture system and use immunocompromised mice to enable use of human AML and T cells with nanoTCEs. We show that CD33 is ubiquitously present on AML cells. The CD33 nanoTCEs bind preferentially to AML cells compared to Isotype. We show that nanoTCEs effectively activate T cells and induce AML killing in vitro and in vivo. Our findings suggest that our nanoTCE technology is a novel and promising immuno-therapy for the treatment of AML and provides a basis for supplemental investigations for the validation of using nanoTCEs in larger animals and patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa