RESUMO
Simplicial Kuramoto models have emerged as a diverse and intriguing class of models describing oscillators on simplices rather than nodes. In this paper, we present a unified framework to describe different variants of these models, categorized into three main groups: "simple" models, "Hodge-coupled" models, and "order-coupled" (Dirac) models. Our framework is based on topology and discrete differential geometry, as well as gradient systems and frustrations, and permits a systematic analysis of their properties. We establish an equivalence between the simple simplicial Kuramoto model and the standard Kuramoto model on pairwise networks under the condition of manifoldness of the simplicial complex. Then, starting from simple models, we describe the notion of simplicial synchronization and derive bounds on the coupling strength necessary or sufficient for achieving it. For some variants, we generalize these results and provide new ones, such as the controllability of equilibrium solutions. Finally, we explore a potential application in the reconstruction of brain functional connectivity from structural connectomes and find that simple edge-based Kuramoto models perform competitively or even outperform complex extensions of node-based models.
RESUMO
A key challenge of nonlinear dynamics and network science is to understand how higher-order interactions influence collective dynamics. Although many studies have approached this question through linear stability analysis, less is known about how higher-order interactions shape the global organization of different states. Here, we shed light on this issue by analyzing the rich patterns supported by identical Kuramoto oscillators on hypergraphs. We show that higher-order interactions can have opposite effects on linear stability and basin stability: They stabilize twisted states (including full synchrony) by improving their linear stability, but also make them hard to find by markedly reducing their basin size. Our results highlight the importance of understanding higher-order interactions from both local and global perspectives.
RESUMO
Higher-order networks have emerged as a powerful framework to model complex systems and their collective behavior. Going beyond pairwise interactions, they encode structured relations among arbitrary numbers of units through representations such as simplicial complexes and hypergraphs. So far, the choice between simplicial complexes and hypergraphs has often been motivated by technical convenience. Here, using synchronization as an example, we demonstrate that the effects of higher-order interactions are highly representation-dependent. In particular, higher-order interactions typically enhance synchronization in hypergraphs but have the opposite effect in simplicial complexes. We provide theoretical insight by linking the synchronizability of different hypergraph structures to (generalized) degree heterogeneity and cross-order degree correlation, which in turn influence a wide range of dynamical processes from contagion to diffusion. Our findings reveal the hidden impact of higher-order representations on collective dynamics, highlighting the importance of choosing appropriate representations when studying systems with nonpairwise interactions.
RESUMO
The temporal organization of biological systems is key for understanding them, but current methods for identifying this organization are often ad hoc and require prior knowledge. We present Phasik, a method that automatically identifies this multiscale organization by combining time series data (protein or gene expression) and interaction data (protein-protein interaction network). Phasik builds a (partially) temporal network and uses clustering to infer temporal phases. We demonstrate the method's effectiveness by recovering well-known phases and sub-phases of the cell cycle of budding yeast and phase arrests of mutants. We also show its general applicability using temporal gene expression data from circadian rhythms in wild-type and mutant mouse models. We systematically test Phasik's robustness and investigate the effect of having only partial temporal information. As time-resolved, multiomics datasets become more common, this method will allow the study of temporal regulation in lesser-known biological contexts, such as development, metabolism, and disease.
Assuntos
Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Camundongos , Animais , Ciclo Celular/genética , Mapas de Interação de Proteínas/genética , Divisão Celular , Ritmo Circadiano/genéticaRESUMO
Nonautonomous driving of an oscillator has been shown to enlarge the Arnold tongue in parameter space, but little is known about the analogous effect for a network of oscillators. To test the hypothesis that deterministic nonautonomous perturbation is a good candidate for stabilizing complex dynamics, we consider a network of identical phase oscillators driven by an oscillator with a slowly time-varying frequency. We investigate both the short- and long-term stability of the synchronous solutions of this nonautonomous system. For attractive couplings we show that the region of stability grows as the amplitude of the frequency modulation is increased, through the birth of an intermittent synchronization regime. For repulsive couplings, we propose a control strategy to stabilize the dynamics by altering very slightly the network topology. We also show how, without changing the topology, time-variability in the driving frequency can itself stabilize the dynamics. As a byproduct of the analysis, we observe chimeralike states. We conclude that time-variability-induced stability phenomena are also present in networks, reinforcing the idea that this is a quite realistic scenario for living systems to use in maintaining their functioning in the face of ongoing perturbations.
RESUMO
Synchronization and stability under periodic oscillatory driving are well understood, but little is known about the effects of aperiodic driving, despite its abundance in nature. Here, we consider oscillators subject to driving with slowly varying frequency, and investigate both short-term and long-term stability properties. For a phase oscillator, we find that, counterintuitively, such variation is guaranteed to enlarge the Arnold tongue in parameter space. Using analytical and numerical methods that provide information on time-variable dynamical properties, we find that the growth of the Arnold tongue is specifically due to the growth of a region of intermittent synchronization where trajectories alternate between short-term stability and short-term neutral stability, giving rise to stability on average. We also present examples of higher-dimensional nonlinear oscillators where a similar stabilization phenomenon is numerically observed. Our findings help support the case that in general, deterministic nonautonomous perturbation is a very good candidate for stabilizing complex dynamics.