Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 596(7873): 505-508, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433943

RESUMO

Fast radio bursts (FRBs) are extragalactic astrophysical transients1 whose brightness requires emitters that are highly energetic yet compact enough to produce the short, millisecond-duration bursts. FRBs have thus far been detected at frequencies from 8 gigahertz (ref. 2) down to 300 megahertz (ref. 3), but lower-frequency emission has remained elusive. Some FRBs repeat4-6, and one of the most frequently detected, FRB 20180916B7, has a periodicity cycle of 16.35 days (ref. 8). Using simultaneous radio data spanning a wide range of wavelengths (a factor of more than 10), here we show that FRB 20180916B emits down to 120 megahertz, and that its activity window is frequency dependent (that is, chromatic). The window is both narrower and earlier at higher frequencies. Binary wind interaction models predict a wider window at higher frequencies, the opposite of our observations. Our full-cycle coverage shows that the 16.3-day periodicity is not aliased. We establish that low-frequency FRB emission can escape the local medium. For bursts of the same fluence, FRB 20180916B is more active below 200 megahertz than at 1.4 gigahertz. Combining our results with previous upper limits on the all-sky FRB rate at 150 megahertz, we find there are 3-450 FRBs in the sky per day above 50 Jy ms. Our chromatic results strongly disfavour scenarios in which absorption from strong stellar winds causes FRB periodicity. We demonstrate that some FRBs are found in 'clean' environments that do not absorb or scatter low-frequency radiation.

2.
Bioconjug Chem ; 28(7): 1807-1810, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28636368

RESUMO

The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 µM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Nanopartículas Metálicas/química , Antibacterianos/química , Divisão Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/antagonistas & inibidores , Ouro , Ligantes , Proteínas de Membrana Transportadoras , Nanopartículas Metálicas/uso terapêutico , Bibliotecas de Moléculas Pequenas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa