Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0275228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174020

RESUMO

Previous literature has shown that music preferences (and thus preferred musical features) differ depending on the listening context and reasons for listening (RL). Yet, to our knowledge no research has investigated how features of music that people dance or move to relate to particular RL. Consequently, in two online surveys, participants (N = 173) were asked to name songs they move to ("dance music"). Additionally, participants (N = 105) from Survey 1 provided RL for their selected songs. To investigate relationships between the two, we first extracted audio features from dance music using the Spotify API and compared those features with a baseline dataset that is considered to represent music in general. Analyses revealed that, compared to the baseline, the dance music dataset had significantly higher levels of energy, danceability, valence, and loudness, and lower speechiness, instrumentalness and acousticness. Second, to identify potential subgroups of dance music, a cluster analysis was performed on its Spotify audio features. Results of this cluster analysis suggested five subgroups of dance music with varying combinations of Spotify audio features: "fast-lyrical", "sad-instrumental", "soft-acoustic", "sad-energy", and "happy-energy". Third, a factor analysis revealed three main RL categories: "achieving self-awareness", "regulation of arousal and mood", and "expression of social relatedness". Finally, we identified variations in people's RL ratings for each subgroup of dance music. This suggests that certain characteristics of dance music are more suitable for listeners' particular RL, which shape their music preferences. Importantly, the highest-rated RL items for dance music belonged to the "regulation of mood and arousal" category. This might be interpreted as the main function of dance music. We hope that future research will elaborate on connections between musical qualities of dance music and particular music listening functions.


Assuntos
Meios de Comunicação , Música , Acústica , Percepção Auditiva , Auscultação , Humanos
3.
Front Hum Neurosci ; 8: 903, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426051

RESUMO

Music has the capacity to induce movement in humans. Such responses during music listening are usually spontaneous and range from tapping to full-body dancing. However, it is still unclear how humans embody musical structures to facilitate entrainment. This paper describes two experiments, one dealing with period locking to different metrical levels in full-body movement and its relationships to beat- and rhythm-related musical characteristics, and the other dealing with phase locking in the more constrained condition of sideways swaying motions. Expected in Experiment 1 was that music with clear and strong beat structures would facilitate more period-locked movement. Experiment 2 was assumed to yield a common phase relationship between participants' swaying movements and the musical beat. In both experiments optical motion capture was used to record participants' movements. In Experiment 1 a window-based period-locking probability index related to four metrical levels was established, based on acceleration data in three dimensions. Subsequent correlations between this index and musical characteristics of the stimuli revealed pulse clarity to be related to periodic movement at the tactus level, and low frequency flux to mediolateral and anteroposterior movement at both tactus and bar levels. At faster tempi higher metrical levels became more apparent in participants' movement. Experiment 2 showed that about half of the participants showed a stable phase relationship between movement and beat, with superior-inferior movement most often being synchronized to the tactus level, whereas mediolateral movement was rather synchronized to the bar level. However, the relationship between movement phase and beat locations was not consistent between participants, as the beat locations occurred at different phase angles of their movements. The results imply that entrainment to music is a complex phenomenon, involving the whole body and occurring at different metrical levels.

4.
Front Psychol ; 4: 183, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641220

RESUMO

Music makes us move. Several factors can affect the characteristics of such movements, including individual factors or musical features. For this study, we investigated the effect of rhythm- and timbre-related musical features as well as tempo on movement characteristics. Sixty participants were presented with 30 musical stimuli representing different styles of popular music, and instructed to move along with the music. Optical motion capture was used to record participants' movements. Subsequently, eight movement features and four rhythm- and timbre-related musical features were computationally extracted from the data, while the tempo was assessed in a perceptual experiment. A subsequent correlational analysis revealed that, for instance, clear pulses seemed to be embodied with the whole body, i.e., by using various movement types of different body parts, whereas spectral flux and percussiveness were found to be more distinctly related to certain body parts, such as head and hand movement. A series of ANOVAs with the stimuli being divided into three groups of five stimuli each based on the tempo revealed no significant differences between the groups, suggesting that the tempo of our stimuli set failed to have an effect on the movement features. In general, the results can be linked to the framework of embodied music cognition, as they show that body movements are used to reflect, imitate, and predict musical characteristics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa