Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399380

RESUMO

σ1 receptors play a crucial role in various neurological and neurodegenerative diseases including pain, psychosis, Alzheimer's disease, and depression. Spirocyclic piperidines represent a promising class of potent σ1 receptor ligands. The relationship between structural modifications and σ1 receptor affinity and selectivity over σ2 receptors led to the 2-fluoroethyl derivative fluspidine (2, Ki = 0.59 nM). Enantiomerically pure (S)-configured fluspidine ((S)-2) was prepared by the enantioselective reduction of the α,ß-unsaturated ester 23 with NaBH4 and the enantiomerically pure co-catalyst (S,S)-24. The pharmacokinetic properties of both fluspidine enantiomers (R)-2 and (S)-2 were analyzed in vitro. Molecular dynamics simulations revealed very similar interactions of both fluspidine enantiomers with the σ1 receptor protein, with a strong ionic interaction between the protonated amino moiety of the piperidine ring and the COO- moiety of glutamate 172. The 18F-labeled radiotracers (S)-[18F]2 and (R)-[18F]2 were synthesized in automated syntheses using a TRACERlab FX FN synthesis module. High radiochemical yields and radiochemical purity were achieved. Radiometabolites were not found in the brains of mice, piglets, and rhesus monkeys. While both enantiomers revealed similar initial brain uptake, the slow washout of (R)-[18F]2 indicated a kind of irreversible binding. In the first clinical trial, (S)-[18F]2 was used to visualize σ1 receptors in the brains of patients with major depressive disorder (MDD). This study revealed an increased density of σ1 receptors in cortico-striato-(para)limbic brain regions of MDD patients. The increased density of σ1 receptors correlated with the severity of the depressive symptoms. In an occupancy study with the PET tracer (S)-[18F]2, the selective binding of pridopidine at σ1 receptors in the brain of healthy volunteers and HD patients was shown.

2.
EJNMMI Radiopharm Chem ; 9(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165538

RESUMO

BACKGROUND: Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS: An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION: [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa