Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Virol ; 98(7): e0006624, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38814068

RESUMO

COVID-19 can cause neurological symptoms such as fever, dizziness, and nausea. However, such neurological symptoms of SARS-CoV-2 infection have been hardly assessed in mouse models. In this study, we infected two commonly used wild-type mouse lines (C57BL/6J and 129/SvEv) and a 129S calcitonin gene-related peptide (αCGRP) null-line with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including fever, dizziness, and nausea. We then evaluated whether a CGRP receptor antagonist, olcegepant, a "gepant" antagonist used in migraine treatment, could mitigate acute neuroinflammatory and neurological signs of SARS-COV-2 infection. First, we determined whether CGRP receptor antagonism provided protection from permanent weight loss in older (>18 m) C57BL/6J and 129/SvEv mice. We also observed acute fever, dizziness, and nausea in all older mice, regardless of treatment. In both wild-type mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP receptor signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic or endemic coronavirus outbreaks.IMPORTANCECoronavirus disease (COVID-19) can cause neurological symptoms such as fever, headache, dizziness, and nausea. However, such neurological symptoms of severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infection have been hardly assessed in mouse models. In this study, we first infected two commonly used wild-type mouse lines (C57BL/6J and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological symptoms including fever and nausea. Furthermore, we showed that the migraine treatment drug olcegepant could reduce long-term weight loss and IL-6 release associated with SARS-CoV-2 infection. These findings suggest that a migraine blocker can be protective for at least some acute SARS-CoV-2 infection signs and raise the possibility that it may also impact long-term outcomes.


Assuntos
COVID-19 , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Modelos Animais de Doenças , Interleucina-6 , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca , SARS-CoV-2 , Redução de Peso , Animais , Camundongos , Interleucina-6/metabolismo , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/virologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Tratamento Farmacológico da COVID-19 , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Humanos , Feminino , Piperazinas
2.
Cephalalgia ; 44(1): 3331024231223971, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215227

RESUMO

BACKGROUND: Migraine and vestibular migraine are disorders associated with a heightened motion sensitivity that provoke symptoms of motion-induced nausea and motion sickness. VM affects ∼3% of adults in the USA and affects three-fold more women than men. Triptans (selective serotonin receptor agonists) relieve migraine pain but lack efficacy for vertigo. Murine models of photophobia and allodynia have used injections of calcitonin gene-related peptide (CGRP) or other migraine triggers, such as sodium nitroprusside (SNP), to induce migraine sensitivities in mice to touch and light. Yet, there is limited research on whether these triggers affect motion-induced nausea in mice, and whether migraine blockers can reduce these migraine symptoms. We hypothesized that systemic delivery of CGRP or SNP will increase motion sickness susceptibility and motion-induced nausea in mouse models, and that migraine blockers can block these changes induced by systemically delivered CGRP or SNP. METHODS: We investigated two measures of motion sickness assessment [motion sickness index (MSI) scoring and motion-induced thermoregulation] after intraperitoneal injections of either CGRP or SNP in C57BL/6J mice. The drugs olcegepant, sumatriptan and rizatriptan were used to assess the efficacy of migraine blockers. RESULTS: MSI measures were confounded by CGRP's effect on gastric distress. However, analysis of tail vasodilatations as a surrogate for motion-induced nausea was robust for both migraine triggers. Only olcegepant treatment rescued tail vasodilatations. CONCLUSIONS: These preclinical findings support the use of small molecule CGRP receptor antagonists for the treatment of motion-induced nausea of migraine, and show that triptan therapeutics are ineffective against motion-induced nausea of migraine.Trial Registration: Not Applicable.


Assuntos
Transtornos de Enxaqueca , Enjoo devido ao Movimento , Humanos , Masculino , Adulto , Feminino , Camundongos , Animais , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Endogâmicos C57BL , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/complicações , Enjoo devido ao Movimento/tratamento farmacológico , Enjoo devido ao Movimento/complicações , Náusea
3.
J Neurosci ; 34(31): 10453-8, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-25080603

RESUMO

The neuroactive peptide calcitonin-gene related peptide (CGRP) is known to act at efferent synapses and their targets in hair cell organs, including the cochlea and lateral line. CGRP is also expressed in vestibular efferent neurons as well as a number of central vestibular neurons. Although CGRP-null (-/-) mice demonstrate a significant reduction in cochlear nerve sound-evoked activity compared with wild-type mice, it is unknown whether and how the loss of CGRP influence vestibular system function. Vestibular function was assessed by quantifying the vestibulo-ocular reflex (VOR) in alert mice. The loss of CGRP in (-/-) mice was associated with a reduction of the VOR gain of ≈50% without a concomitant change in phase. Using immunohistochemistry, we confirmed that, although CGRP staining was absent in the vestibular end-organs of null (-/-) mice, cholinergic staining appeared normal, suggesting that the overall gross development of vestibular efferent innervation was unaltered. We further confirmed that the observed deficit in vestibular function of null (-/-) mice was not the result of nontargeted effects at the level of the extraocular motor neurons and/or their innervation of extraocular muscles. Analysis of the relationship between vestibular quick phase amplitude and peak velocity revealed that extraocular motor function was unchanged, and immunohistochemistry revealed no abnormalities in motor endplates. Together, our findings show that the neurotransmitter CGRP plays a key role in ensuring VOR efficacy.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/deficiência , Reflexo Vestíbulo-Ocular/genética , Análise de Variância , Animais , Toxinas Botulínicas Tipo A/metabolismo , Calbindina 2/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Colina O-Acetiltransferase/metabolismo , Movimentos Oculares/genética , Feminino , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Knockout , Miosina VIIa , Miosinas/metabolismo , Vestíbulo do Labirinto/metabolismo
4.
J Acoust Soc Am ; 138(1): 58-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233006

RESUMO

Cochlear damage caused by loud sounds can be attenuated by "sound-conditioning" methods. The amount of adaptation for distortion product otoacoustic emissions (DPOAEs) measured in alert rabbits previously predicted an ear's susceptibility to a subsequent noise exposure. The present study investigated if sound-conditioning influenced the robustness of such DPOAE adaptation, and if such conditioning elicited more protection by increasing the amount of DPOAE adaptation. Toward this end, rabbits were divided into two study groups: (1) experimental animals exposed to a sound-conditioning protocol, and (2) unconditioned control animals. After base-line measures, all rabbits were exposed to an overstimulation paradigm consisting of an octave band noise, and then re-assessed 3 weeks post-exposure to determine permanent changes in DPOAEs. A major result was that prior sound-conditioning protected reductions in DPOAE levels by an average of 10-15 dB. However, DPOAE adaptation decreased with sound-conditioning, so that such conditioning was no longer related to noise-induced reductions in DPOAEs. Together, these findings suggest that sound-conditioning affected neural pathways other than those that likely mediate DPOAE adaptation (e.g., medial olivocochlear efferent and/or middle-ear muscle reflexes).


Assuntos
Adaptação Fisiológica/fisiologia , Ruído , Emissões Otoacústicas Espontâneas/fisiologia , Distorção da Percepção/fisiologia , Animais , Cóclea/fisiologia , Condicionamento Psicológico , Feminino , Masculino , Percepção da Altura Sonora/fisiologia , Coelhos , Reflexo Acústico/fisiologia
5.
J Acoust Soc Am ; 135(4): 1941-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25234992

RESUMO

A noninvasive test was developed in rabbits based on fast adaptation measures for 2f1-f2 distortion-product otoacoustic emissions (DPOAEs). The goal was to evaluate the effective reflex activation, i.e., "functional strength," of both the descending medial olivocochlear efferent reflex (MOC-R) and the middle-ear muscle reflex (MEM-R) through sound activation. Classically, it is assumed that both reflexes contribute toward protecting the inner ear from cochlear damage caused by noise exposure. The DP-gram method described here evaluated the MOC-R effect on DPOAE levels over a two-octave (oct) frequency range. To estimate the related activation of the middle-ear muscles (MEMs), the MEM-R was measured by monitoring the level of the f1-primary tone throughout its duration. Following baseline measures, rabbits were subjected to noise over-exposure. A main finding was that the measured adaptive activity was highly variable between rabbits but less so between the ears of the same animal. Also, together, the MOC-R and MEM-R tests showed that, on average, DPOAE adaptation consisted of a combined contribution from both systems. Despite this shared involvement, the amount of DPOAE adaptation measured for a particular animal's ear predicted that ear's subsequent susceptibility to the noise over-exposure for alert but not for deeply anesthetized rabbits.


Assuntos
Nível de Alerta , Vias Auditivas/fisiologia , Cóclea/inervação , Orelha Média/inervação , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Emissões Otoacústicas Espontâneas , Reflexo Acústico , Estimulação Acústica , Animais , Fadiga Auditiva , Retroalimentação Psicológica , Coelhos , Fatores de Tempo
6.
PLoS One ; 19(6): e0303801, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865379

RESUMO

Aging impacts the vestibular system and contributes to imbalance. In fact, imbalance precedes changes in cognition in the elderly. However, research is limited in assessing aging mouse models that are deficient in crucial neuromodulators like Calcitonin Gene-Related Peptide (CGRP). We studied the loss of CGRP and its effects in the aging mouse, namely its effect on both static and dynamic imbalances. Postural sway and rotarod testing were performed before and after a vestibular challenge (VC) in the 129S wild type and the αCGRP (-/-) null mice. Four age groups were tested that correspond to young adulthood, late adulthood, middle age, and senescence in humans. Our results suggest wild type mice experience a decline in rotarod ability due to aging after they reach their prime performance at 6-10 months of age, while the αCGRP (-/-) null mice perform poorly on rotarod early in life but improve with age as they get older, potentially due to vestibular compensation. Our postural sway study suggests that a vestibular challenge can lead to significantly reduced CoP ellipse areas (freezing behaviors) in older mice, and this change occurs earlier in the αCGRP (-/-) null but requires future studies to evaluate anxiety effects. These results indicate that αCGRP is an important component of proper balance and that the loss of αCGRP can contribute to balance complications that may compound with aging.


Assuntos
Envelhecimento , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Knockout , Equilíbrio Postural , Animais , Envelhecimento/fisiologia , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Vestíbulo do Labirinto/metabolismo , Masculino , Teste de Desempenho do Rota-Rod , Feminino
7.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38997144

RESUMO

Motion-induced anxiety and agoraphobia are more frequent symptoms in patients with vestibular migraine (VM) than migraine without vertigo. The neuropeptide calcitonin gene-related peptide (CGRP) is a therapeutic target for migraine and VM, but the link between motion hypersensitivity, anxiety, and CGRP is relatively unexplored, especially in preclinical mouse models. To further examine this link, we tested the effects of systemic CGRP and off-vertical axis rotation (OVAR) on elevated plus maze (EPM) and rotarod performance in male and female C57BL/6J mice. Rotarod ability was assessed using two different dowel diameters: mouse dowel (r = 1.5 cm) versus rat dowel (r = 3.5 cm). EPM results indicate that CGRP alone or OVAR alone did not increase anxiety indices. However, the combination of CGRP and OVAR did elicit anxiety-like behavior. On the rotarod, CGRP reduced performance in both sexes on a mouse dowel but had no effect on a rat dowel, whereas OVAR had a significant effect on the rat dowel. These results suggest that only the combination of CGRP with vestibular stimulation induces anxiety-like behavior and that CGRP affects the dynamic balance function in mice depending on the type of challenge presented. These findings suggest that anxiety-like behaviors can be teased out from imbalance behaviors in a mouse model of "migraine." Future studies are aimed to determine if CGRP receptor antagonists that have been effective treating migraineurs and mouse "migraine" models may also reduce the anxiety observed in migraine.


Assuntos
Ansiedade , Peptídeo Relacionado com Gene de Calcitonina , Camundongos Endogâmicos C57BL , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Masculino , Ansiedade/metabolismo , Feminino , Modelos Animais de Doenças , Camundongos , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Teste de Desempenho do Rota-Rod , Vestíbulo do Labirinto/efeitos dos fármacos , Transtornos de Enxaqueca/metabolismo
8.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37965203

RESUMO

COVID-19 can result in neurological symptoms such as fever, headache, dizziness, and nausea. However, neurological signs of SARS-CoV-2 infection have been hardly assessed in mouse models. Here, we infected two commonly used wildtype mice lines (C57BL/6 and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including motion-related dizziness. We then evaluated whether the Calcitonin Gene-Related Peptide (CGRP) receptor antagonist, olcegepant, used in migraine treatment could mitigate acute neuroinflammatory and neurological responses to SARS-COV-2 infection. We infected wildtype C57BL/6J and 129/SvEv mice, and a 129 αCGRP-null mouse line with a mouse-adapted SARS-CoV-2 virus, and evaluated the effect of CGRP receptor antagonism on the outcome of that infection. First, we determined that CGRP receptor antagonism provided protection from permanent weight loss in older (>12 m) C57BL/6J and 129 SvEv mice. We also observed acute fever and motion-induced dizziness in all older mice, regardless of treatment. However, in both wildtype mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels by half, with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic and/or endemic coronaviruses.

9.
bioRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39282463

RESUMO

Musical training has been associated with enhanced neural processing of sounds, as measured via the frequency following response (FFR), implying the potential for human subcortical neural plasticity. We conducted a large-scale multi-site preregistered study (n > 260) to replicate and extend the findings underpinning this important relationship. We failed to replicate any of the major findings published previously in smaller studies. Musical training was related neither to enhanced spectral encoding strength of a speech stimulus (/da/) in babble nor to a stronger neural-stimulus correlation. Similarly, the strength of neural tracking of a speech sound with a time-varying pitch was not related to either years of musical training or age of onset of musical training. Our findings provide no evidence for plasticity of early auditory responses based on musical training and exposure.

10.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37461730

RESUMO

Aging impacts the vestibular system and contributes to imbalance. In fact, in the elderly balance deficits often precede changes in cognition. However, imbalance research is limited in assessing aging mouse models that are deficient in neuromodulators like Calcitonin Gene-Related Peptide (CGRP). We studied the loss of CGRP and its effects in the aging mouse, namely its effect on both static and dynamic imbalances. In addition, postural sway and rotarod testing were performed before and after a vestibular challenge (VC) in the 129S wildtype and the αCGRP (-/-) null mice. Four age groups were tested that correspond to young adulthood, late adulthood, middle age, and senescence in humans. Our results suggest wildtype mice experience a decline in rotarod ability with increased age, while the αCGRP (-/-) null mice perform poorly on rotarod early in life and do not improve. Our postural sway study suggests that a vestibular challenge can lead to significantly reduced CoP ellipse areas (freezing behaviors) in older mice, and this change occurs earlier in the αCGRP (-/-) null mouse. These results indicate that αCGRP is an important component of static and dynamic balance; and that the loss of αCGRP can contribute to balance complications that may compound with aging.

11.
bioRxiv ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37461692

RESUMO

Motion-induced anxiety and agoraphobia are more frequent symptoms in patients with vestibular migraine than migraine without vertigo. The neuropeptide calcitonin gene-related peptide (CGRP) is a therapeutic target for migraine and vestibular migraine, but the link between motion hypersensitivity, anxiety, and CGRP is relatively unexplored, especially in preclinical mouse models. To further examine this link, we tested the effects of systemic CGRP and off-vertical axis rotation (OVAR) on elevated plus maze (EPM) and rotarod performance in male and female C57BL/6J mice. Rotarod ability was assessed using two different dowel diameters: mouse dowel (r = 1.5 cm) versus rat dowel (r = 3.5 cm). EPM results indicate CGRP increased anxiety indexes and time spent in the closed arms in females but not males, while OVAR increased anxiety indexes and time spent in the closed arms in both sexes. The combination of CGRP and OVAR elicited even greater anxiety-like behavior. On the rotarod, CGRP reduced performance in both sexes on a mouse dowel but had no effect on a rat dowel, whereas OVAR had a significant effect on the rat dowel. Rotarod performance is influenced by dowel diameter, with larger dowels presenting greater challenges on balance function. These results suggest that both CGRP and vestibular stimulation induce anxiety-like behavior and that CGRP affects dynamic balance function in mice depending on the type of challenge presented. Findings highlight the potential translation of anti-CGRP receptor signaling therapeutics for treating motion hypersensitivity and motion-induced anxiety that manifests in vestibular migraine. Significance statement: Anxiety is very common in patients with dizziness and vestibular migraine (VM). Elevated CGRP levels have been linked to migraine symptoms of increased light and touch sensitivity in mice and humans and we wondered if a systemic injection of CGRP into mice would increase anxiety and imbalance; and if mice further exposed to a vestibular stimulus would have their anxiety measures sharpened. We observed a female preponderance in both CGRP and motion-induced anxiety-like behaviors, suggesting that the role of CGRP in migraine's anxiety symptoms can be recapitulated in the mouse. Our findings suggest that CGRP signaling has a pertinent role in motion-induced anxiety and dynamic imbalance, and warrants the potential use of anti-CGRP therapies for the treatment of these symptoms.

12.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961568

RESUMO

Both enhanced motion-induced nausea and increased static imbalance are \observed symptoms in migraine and especially vestibular migraine (VM). Motion-induced nausea and static imbalance were investigated in a mouse model, nestin/hRAMP1, expressing elevated levels of human RAMP1 in the CNS, which enhances CGRP signaling in the nervous system. Behavioral surrogates such as the motion-induced thermoregulation and postural sway center of pressure (CoP) assays were used to assess motion sensitivity. Tail vasodilation analysis revealed that this model exhibits an increased sensitivity to CGRP's effects at lower doses compared to control mice. In addition, the nestin/hRAMP1 mice exhibit a higher dynamic range in postural sway than their wildtype counterparts, along with increased sway observed in nestin/hRAMP1 male mice that was not present in male littermate controls. Results from migraine blocker experiments were challenging to interpret, but the data suggests that olcegepant is incapable of reversing CGRP-induced alterations in the nestin/hRAMP1 mice, while rizatriptan was ineffective in both the nestin/hRAMP1 and control mice. The results indicate that overexpression of hRAMP1 leads to heightened endogenous CGRP signaling. Results also suggest that both olcegepant and rizatriptan are ineffective in reducing CGRP-triggered nausea and sway in this hypersensitive CGRP mouse model. This study suggests that hypersensitivity to CGRP may be a mouse model for difficult to treat cases of vestibular migraine.

13.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34155086

RESUMO

Congenital sensorineural hearing loss (SNHL) affects thousands of infants each year and results in significant delays in speech and language development. Previous studies have shown that early exposure to a simple augmented acoustic environment (AAE) can limit the effects of progressive SNHL on hearing sensitivity. However, SNHL is also accompanied by hearing loss that is not assessed on standard audiological examinations, such as reduced temporal processing acuity. To assess whether sound therapy may improve these deficits, a mouse model of congenital SNHL was exposed to simple or temporally complex AAE. The DBA/2J mouse strain develops rapid, base to apex, progressive SNHL beginning at birth and is functionally deaf by six months of age. Hearing sensitivity and auditory brainstem function was measured using otoacoustic emissions, auditory brainstem response (ABR) and extracellular recording from the inferior colliculus (IC) in mice following exposure to 30 d of continuous AAE. Peripheral function and sound sensitivity in auditory midbrain neurons improved following exposure to both types of AAE. However, exposure to a novel, temporally complex AAE more strongly improved a measure of temporal processing acuity, neural gap-in-noise detection in the auditory midbrain. These experiments suggest that targeted sound therapy may be harnessed to improve hearing outcomes for children suffering from congenital SNHL.


Assuntos
Perda Auditiva Neurossensorial , Percepção do Tempo , Estimulação Acústica , Acústica , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Camundongos , Camundongos Endogâmicos DBA
14.
Front Neurol ; 12: 812678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046886

RESUMO

Vestibular migraine (VM) is an increasingly recognized pathology yet remains as an underdiagnosed cause of vestibular disorders. While current diagnostic criteria are codified in the 2012 Barany Society document and included in the third edition of the international classification of headache disorders, the pathophysiology of this disorder is still elusive. The Association for Migraine Disorders hosted a multidisciplinary, international expert workshop in October 2020 and identified seven current care gaps that the scientific community needs to resolve, including a better understanding of the range of symptoms and phenotypes of VM, the lack of a diagnostic marker, a better understanding of pathophysiologic mechanisms, as well as the lack of clear recommendations for interventions (nonpharmacologic and pharmacologic) and finally, the need for specific outcome measures that will guide clinicians as well as research into the efficacy of interventions. The expert group issued several recommendations to address those areas including establishing a global VM registry, creating an improved diagnostic algorithm using available vestibular tests as well as others that are in development, conducting appropriate trials of high quality to validate current clinically available treatment and fostering collaborative efforts to elucidate the pathophysiologic mechanisms underlying VM, specifically the role of the trigemino-vascular pathways.

15.
J Comp Neurol ; 506(6): 1003-17, 2008 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-18085597

RESUMO

Low-level lead (Pb) exposure is a risk factor for learning disabilities, attention deficit hyperactivity disorder (ADHD), and other neurological dysfunction. It is not known how Pb produces these behavioral deficits, but low-level exposure during development is associated with auditory temporal processing deficits in an avian model, while hearing thresholds remain normal. Similar auditory processing deficits are found in children with learning disabilities and ADHD. To identify cellular changes underlying this functional deficit, Pb-induced alterations of neurons and glia within the mammalian auditory brainstem nuclei were quantified in control and Pb-exposed mice at postnatal day 21 by using immunohistochemistry, Western blotting, and 2D gel electrophoresis. Pb-treated mice were exposed to either 0.1 mM (low) or 2 mM (high) Pb acetate throughout gestation and through 21 days postnatally. Pb exposure results in little change in glial proteins such as glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), or F4/80 as determined by Western blot analysis and immunohistochemistry. In contrast, Pb exposure alters neuronal structural proteins by inducing increased phosphorylation of both the medium (NFM) and high-weight (NFH) forms of neurofilament within auditory brainstem nuclei. Axons immunolabeled for neurofilament protein show neuritic beading following Pb exposure both in vivo and in vitro, suggesting that Pb exposure also impairs axonal transport. Functional assessment shows no significant loss of peripheral function, but does reveal impairments in brainstem conduction time and temporal processing within the brainstem. These results provide evidence that Pb exposure during development alters axonal structure and function within brainstem auditory nuclei.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/crescimento & desenvolvimento , Chumbo/toxicidade , Proteínas de Neurofilamentos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Fatores Etários , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/metabolismo , Tronco Encefálico/patologia , Contagem de Células , Linhagem Celular Transformada , Eletroforese em Gel Bidimensional , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Chumbo/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína Básica da Mielina/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Tempo de Reação/efeitos da radiação
16.
Front Cell Neurosci ; 12: 291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30297983

RESUMO

Active mechanical amplification of sound occurs in cochlear outer hair cells (OHCs) that change their length with oscillations of their membrane potential. Such length changes are the proposed cellular source of the cochlear amplifier, and prestin is the motor protein responsible for OHC electromotility. Previous findings have shown that mice lacking prestin displayed a loss of OHC electromotility, subsequent loss of distortion-product otoacoustic emissions, and a 40-60 dB increase in hearing thresholds. In this study we were interested in studying the functional consequences of the complete loss of cochlear amplification on neural coding of frequency selectivity, tuning, and temporal processing in the auditory midbrain. We recorded near-field auditory evoked potentials and multi-unit activity from the inferior colliculus (IC) of prestin (-/-) null and prestin (+/+) wild-type control mice and determined frequency response areas (FRAs), tuning sharpness, and gap detection to tone bursts and silent gaps embedded in broadband noise. We were interested in determining if the moderate to severe sensorineural hearing loss associated with the loss of motor protein prestin would also impair auditory midbrain temporal-processing measures, or if compensatory mechanisms within the brainstem could compensate for the loss of prestin. In prestin knockout mice we observed that there are severe impairments in midbrain tuning, thresholds, excitatory drive, and gap detection suggesting that brainstem and midbrain processing could not overcome the auditory processing deficits afforded by the loss of OHC electromotility mediated by the prestin protein.

17.
Front Mol Neurosci ; 11: 289, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30197585

RESUMO

Calcitonin gene-related peptide (CGRP) is a neuroactive peptide that is thought to play a role at efferent synapses in hair cell organs including the cochlea, lateral line, and semicircular canal. The deletion of CGRP in transgenic mice is associated with a significant reduction in suprathreshold cochlear nerve activity and vestibulo-ocular reflex (VOR) gain efficacy when compared to littermate controls. Here we asked whether the loss of CGRP also influences otolithic end organ function and contributes to balance impairments. Immunostaining for CGRP was absent in the otolithic end organs of αCGRP null (-/-) mice while choline acetyltransferase (ChAT) immunolabeling appeared unchanged suggesting the overall gross development of efferent innervation in otolithic organs was unaltered. Otolithic function was assessed by quantifying the thresholds, suprathreshold amplitudes, and latencies of vestibular sensory-evoked potentials (VsEPs) while general balance function was assessed using a modified rotarod assay. The loss of αCGRP in null (-/-) mice was associated with: (1) shorter VsEP latencies without a concomitant change in amplitude or thresholds, and (2) deficits in the rotarod balance assay. Our findings show that CGRP loss results in faster otolith afferent activation timing, suggesting that the CGRP component of the efferent vestibular system (EVS) also plays a role in otolithic organ dynamics, which when coupled with reduced VOR gain efficacy, impairs balance.

18.
Front Cell Neurosci ; 11: 361, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213229

RESUMO

Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (-/-)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (-/-)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (-/-) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (-/-) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (-/-). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models.

19.
Autism Res ; 10(2): 337-345, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27404771

RESUMO

Autism spectrum disorder (ASD) is a behaviorally diagnosed disorder of early onset characterized by impairment in social communication and restricted and repetitive behaviors. Some of the earliest signs of ASD involve auditory processing, and a recent study found that hearing thresholds in children with ASD in the mid-range frequencies were significantly related to receptive and expressive language measures. In addition, otoacoustic emissions have been used to detect reduced cochlear function in the presence of normal audiometric thresholds. We were interested then to know if otoacoustic emissions in children with normal audiometric thresholds would also reveal differences between children with ASD and typical developing (TD) controls in mid-frequency regions. Our objective was to specifically measure baseline afferent otoacoustic emissions (distortion-product otoacoustic emissions [DPOAEs]), transient-evoked otoacoustic emissions (TrOAEs), and efferent suppression, in 35 children with high-functioning ASD compared with 42 aged-matched TD controls. All participants were males 6-17 years old, with normal audiometry, and rigorously characterized via Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule. Children with ASD had greatly reduced DPOAE responses in the 1 kHz frequency range, yet had comparable DPOAE responses at 0.5 and 4-8 kHz regions. Furthermore, analysis of the spectral features of TrOAEs revealed significantly decreased emissions in ASD in similar frequencies. No significant differences were noted in DPOAE or TrOAE noise floors, middle ear muscle reflex activity, or efferent suppression between children with ASD and TD controls. In conclusion, attention to specific-frequency deficits using non-invasive measures of cochlear function may be important in auditory processing impairments found in ASD. Autism Res 2017, 10: 337-345. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Limiar Auditivo/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Emissões Otoacústicas Espontâneas/fisiologia , Adolescente , Criança , Humanos , Idioma , Masculino
20.
Hear Res ; 331: 7-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26464051

RESUMO

2,3,7,8-tetrachorodibenzo-p-dioxin (TCDD), a ubiquitous and persistent environmental contaminant, is a potent teratogen. Whereas developmental TCDD toxicity is mediated by the aryl hydrocarbon receptor (AhR), the normal function of the AhR is poorly understood. We tested whether dioxin exposure during a critical period of hair cell development disrupts cochlear function in three mouse strains, (C57BL6, BalbC, and CBA) that contain high affinity AhR-b alleles. C57BL/6, BalbC, and CBA dams were exposed to 500 ng/kg TCDD or olive oil (vehicle) on embryonic day 12 by gavage. Cochlear function was analyzed at 1.5 months of age by measuring 1) auditory brainstem response (ABRs) to tone pips from 5.6 to 30 kHz, and 2) distortion-product otoacoustic emissions (DPOAEs) evoked by primaries with f2 at the same frequency values. Cochlear threshold sensitivity following TCDD exposure was significantly elevated in both female and male mice in the C57BL/6 strain, carrying the Ahb-1 allele, but not significantly elevated in the BalbC or CBA strains, carrying the Ahb-2 allele. These ABR threshold deficits in mice carrying the Ahb-1 allele parallels the cleft palate incidence to higher TCDD exposures, suggesting that ABR testing could serve as a sensitive indicator of TCDD toxicity in at-risk children. Moreover, DPOAEs were not affected following TCDD exposure in any of the mouse strains, suggesting that following TCDD exposure mice with the Ahb-1 allele exhibit a mild auditory neuropathy. The causes of many auditory neuropathies are unknown, yet a developmental exposure to dioxin may be a risk factor for this condition.


Assuntos
Cóclea/efeitos dos fármacos , Perda Auditiva Central/induzido quimicamente , Perda Auditiva Central/fisiopatologia , Exposição Materna/efeitos adversos , Dibenzodioxinas Policloradas/efeitos adversos , Alelos , Animais , Cóclea/fisiologia , Dioxinas/química , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Hidrocarbonetos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Emissões Otoacústicas Espontâneas , Gravidez , Prenhez , Receptores de Hidrocarboneto Arílico/genética , Fatores de Risco , Teratogênicos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa