Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Medicina (Kaunas) ; 54(1)2018 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30344234

RESUMO

Human immunodeficiency virus (HIV) is a global health problem. Early diagnosis, rapid antiretroviral therapy (ART) initiation and monitoring of viral load are the key strategies for effective HIV management. Many people in resource limited settings where timely access to medical care is a challenge and healthcare infrastructure is poor have no access to laboratory facilities and diagnosis is dependent on the presence of point of care (POC) devices. POC instruments have shown to be easy to operate, maintain and transport and can easily be operated by less skilled health workers. Additionally, POC tests do not require laboratory technicians to operate. POC devices have resulted in a growing number of people testing for HIV and thereby receiving treatment early. In recent years, there has been great improvement in the development of POC technologies for early HIV diagnosis, HIV viral load and cluster of differentiation 4 (CD4) measurement. This review discusses POC technologies that are currently available and in the pipeline for diagnosing and monitoring HIV. We also give an overview of the technical and commercialization challenges in POC diagnostics for HIV.


Assuntos
Tecnologia Biomédica/tendências , Infecções por HIV/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Recursos em Saúde , Acessibilidade aos Serviços de Saúde , Humanos
2.
J Biophotonics ; 17(3): e202300334, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041552

RESUMO

SARS-CoV-2 is a threat to public health due to its ability to undergo crucial mutations, increasing its infectivity and decreasing the vaccine's effectiveness. There is a need to find and introduce alternative and effective methods of controlling SARS-CoV-2. LLLT treats diseases by exposing cells or tissues to low levels of red and near-infrared light. The study aims to investigate for the first time the impact of LLLT on SARS-CoV-2 infected HEK293/ACE2 cells and compare them to uninfected ones. Cells were irradiated at 640 nm, at different fluences. Subsequently, the effects of laser irradiation on the virus and cells were assessed using biological assays. Irradiated uninfected cells showed no changes in cell viability and cytotoxicity, while there were changes in irradiated infected cells. Furthermore, uninfected irradiated cells showed no luciferase activity while laser irradiation reduced luciferase activity in infected cells. Under SEM, there was a clear difference between the infected and uninfected cells.


Assuntos
COVID-19 , Terapia com Luz de Baixa Intensidade , Humanos , COVID-19/radioterapia , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Células HEK293 , Peptidil Dipeptidase A/genética
3.
Nanomaterials (Basel) ; 13(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049340

RESUMO

The introduction of point-of-care testing (POCT) has revolutionized medical testing by allowing for simple tests to be conducted near the patient's care point, rather than being confined to a medical laboratory. This has been especially beneficial for developing countries with limited infrastructure, where testing often involves sending specimens off-site and waiting for hours or days for results. However, the development of POCT devices has been challenging, with simplicity, accuracy, and cost-effectiveness being key factors in making these tests feasible. Nanotechnology has played a crucial role in achieving this goal, by not only making the tests possible but also masking their complexity. In this article, recent developments in POCT devices that benefit from nanotechnology are discussed. Microfluidics and lab-on-a-chip technologies are highlighted as major drivers of point-of-care testing, particularly in infectious disease diagnosis. These technologies enable various bioassays to be used at the point of care. The article also addresses the challenges faced by these technological advances and interesting future trends. The benefits of point-of-care testing are significant, especially in developing countries where medical care is shifting towards prevention, early detection, and managing chronic conditions. Infectious disease tests at the point of care in low-income countries can lead to prompt treatment, preventing infections from spreading.

4.
Biomed J ; 44(6 Suppl 1): S37-S47, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35735083

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV) infection remains a global health challenge despite the use of antiretroviral therapy, which has led to a significant decline in the mortality rates. Owing to the unavailability of an effective treatment to completely eradicate the virus, researchers continue to explore new methods. Low level laser therapy (LLLT) has been widely used to treat different medical conditions and involves the exposure of cells or tissues to low levels of red and near infrared light. The study aimed to determine the effect of combining two unrelated therapies on HIV infection in TZM-bl cells. METHODS: In the current study, LLLT was combined with efavirenz, an HIV reverse transcriptase inhibitor to establish their impact on HIV infection in TZM-bl cells. Both the HIV infected and uninfected cells were laser irradiated using a wavelength of 640 nm with fluencies of 2-10 J/cm2. RESULTS: The impact of HIV, efavirenz and irradiation were determined 24 h post irradiation using biological assays. Luciferase assay results showed that the combination of LLLT and efavirenz significantly reduced HIV infection in cells, despite the undesirable effects observed in the cells as demonstrated by cell morphology, proliferation and cell integrity assay. Flow cytometry results demonstrated that cell death was mainly through necrosis while fluorescence microscopy showed the production of reactive oxygen species in HIV infected cells. CONCLUSION: Efavirenz and LLLT significantly reduced HIV infection in TZM-bl cells. Furthermore, the death of HIV infected cells was due to necrosis.


Assuntos
Infecções por HIV , Terapia com Luz de Baixa Intensidade , Alcinos , Benzoxazinas/farmacologia , Benzoxazinas/uso terapêutico , Ciclopropanos , Infecções por HIV/tratamento farmacológico , Humanos , Necrose
5.
J Biophotonics ; 12(7): e201800349, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30811866

RESUMO

Transmission measurement has been perceived as a potential candidate for label-free investigation of biological material. It is a real-time, label-free and non-invasive optical detection technique that has found wide applications in pharmaceutical industry as well as the biological and medical fields. Combining transmission measurement with optical trapping has emerged as a powerful tool allowing stable sample trapping, while also facilitating transmittance data analysis. In this study, a near-infrared laser beam emitting at a wavelength of 1064 nm was used for both optical trapping and transmission measurement investigation of human immunodeficiency virus 1 (HIV-1) infected and uninfected TZM-bl cells. The measurements of the transmittance intensity of individual cells in solution were carried out using a home built optical trapping system combined with laser transmission setup using a single beam gradient trap. Transmittance spectral intensity patterns revealed significant differences between the HIV-1 infected and uninfected cells. This result suggests that the transmittance data analysis technique used in this study has the potential to differentiate between infected and uninfected TZM-bl cells without the use of labels. The results obtained in this study could pave a way into developing an HIV-1 label-free diagnostic tool with possible applications at the point of care .


Assuntos
HIV-1/fisiologia , Pinças Ópticas , Linhagem Celular , Humanos , Lasers
6.
J Biophotonics ; 10(10): 1335-1344, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28128530

RESUMO

Human immunodeficiency virus (HIV-1) infection remains a major health problem despite the use of highly active antiretroviral therapy (HAART), which has greatly reduced mortality rates. Due to the unavailability of an effective vaccine and treatment that would completely eradicate the virus in infected individuals, the quest for new therapies continues. Low level laser therapy (LLLT) involves the exposure of cells to low levels of red or infrared light. LLLT has been widely used in different medical conditions, but not in HIV-1 infection. This study aimed to determine the effects of LLLT on HIV-1 infected and uninfected TZM-bl cells. Both infected and uninfected cells were irradiated at a wavelength of 660 nm with different fluences from 2 J/cm2 to 10 J/cm2 . Changes in cellular responses were assessed using cell morphology, viability, proliferation, cytotoxicity and luciferase activity assays. Upon data analysis, uninfected irradiated cells showed no changes in cell morphology, viability, proliferation and cytotoxicity, while the infected irradiated cells did. In addition, laser irradiation reduced luciferase activity in infected cells. Finally, laser irradiation had no inhibitory effect in uninfected cells, whereas it induced cell damage in a dose dependent manner in infected cells.


Assuntos
Infecções por HIV/terapia , HIV-1/fisiologia , Terapia com Luz de Baixa Intensidade , Trifosfato de Adenosina/metabolismo , Células HEK293 , Humanos , L-Lactato Desidrogenase/metabolismo , Luciferases/metabolismo
7.
PLoS One ; 9(7): e102178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25048802

RESUMO

We investigated 18 HIV-negative patients with MDR-TB for M. tuberculosis (Mtb)- and PPD-specific CD4 T cell responses and followed them over 6 months of drug therapy. Twelve of these patients were sputum culture (SC) positive and six patients were SC negative upon enrollment. Our aim was to identify a subset of mycobacteria-specific CD4 T cells that would predict time to culture conversion. The total frequency of mycobacteria-specific CD4 T cells at baseline could not distinguish patients showing positive or negative SC. However, a greater proportion of late-differentiated (LD) Mtb- and PPD-specific memory CD4 T cells was found in SC positive patients than in those who were SC negative (p = 0.004 and p = 0.0012, respectively). Similarly, a higher co-expression of HLA-DR+ Ki67+ on Mtb- and PPD-specific CD4 T cells could also discriminate between sputum SC positive versus SC negative (p = 0.004 and p = 0.001, respectively). Receiver operating characteristic (ROC) analysis revealed that baseline levels of Ki67+ HLA-DR+ Mtb- and PPD-specific CD4 T cells were predictive of the time to sputum culture conversion, with area-under-the-curve of 0.8 (p = 0.027). Upon treatment, there was a significant decline of these Ki67+ HLA-DR+ T cell populations in the first 2 months, with a progressive increase in mycobacteria-specific polyfunctional IFNγ+ IL2+ TNFα+ CD4 T cells over 6 months. Thus, a subset of activated and proliferating mycobacterial-specific CD4 T cells (Ki67+ HLA-DR+) may provide a valuable marker in peripheral blood that predicts time to sputum culture conversion in TB patients at the start of treatment.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Escarro/microbiologia , Tuberculose/imunologia , Adulto , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/efeitos dos fármacos , Estudos de Coortes , Feminino , HIV/isolamento & purificação , Infecções por HIV/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/efeitos dos fármacos , Escarro/efeitos dos fármacos , Escarro/imunologia , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa