Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Mol Cell ; 82(1): 44-59.e6, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875213

RESUMO

Mutations in PINK1 cause autosomal-recessive Parkinson's disease. Mitochondrial damage results in PINK1 import arrest on the translocase of the outer mitochondrial membrane (TOM) complex, resulting in the activation of its ubiquitin kinase activity by autophosphorylation and initiation of Parkin-dependent mitochondrial clearance. Herein, we report crystal structures of the entire cytosolic domain of insect PINK1. Our structures reveal a dimeric autophosphorylation complex targeting phosphorylation at the invariant Ser205 (human Ser228). The dimer interface requires insert 2, which is unique to PINK1. The structures also reveal how an N-terminal helix binds to the C-terminal extension and provide insights into stabilization of PINK1 on the core TOM complex.


Assuntos
Proteínas de Insetos/metabolismo , Mitocôndrias/enzimologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas Quinases/metabolismo , Tribolium/enzimologia , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Estabilidade Enzimática , Humanos , Proteínas de Insetos/genética , Cinética , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Simulação de Acoplamento Molecular , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Relação Estrutura-Atividade , Tribolium/genética
2.
Cell ; 148(1-2): 150-63, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22265408

RESUMO

The folding and misfolding mechanism of multidomain proteins remains poorly understood. Although thermodynamic instability of the first nucleotide-binding domain (NBD1) of ΔF508 CFTR (cystic fibrosis transmembrane conductance regulator) partly accounts for the mutant channel degradation in the endoplasmic reticulum and is considered as a drug target in cystic fibrosis, the link between NBD1 and CFTR misfolding remains unclear. Here, we show that ΔF508 destabilizes NBD1 both thermodynamically and kinetically, but correction of either defect alone is insufficient to restore ΔF508 CFTR biogenesis. Instead, both ΔF508-NBD1 energetic and the NBD1-MSD2 (membrane-spanning domain 2) interface stabilization are required for wild-type-like folding, processing, and transport function, suggesting a synergistic role of NBD1 energetics and topology in CFTR-coupled domain assembly. Identification of distinct structural deficiencies may explain the limited success of ΔF508 CFTR corrector molecules and suggests structure-based combination corrector therapies. These results may serve as a framework for understanding the mechanism of interface mutation in multidomain membrane proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Modelos Moleculares , Mutação , Dobramento de Proteína , Estrutura Terciária de Proteína
3.
Cell Mol Life Sci ; 79(3): 167, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233680

RESUMO

The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.


Assuntos
Autofagia/fisiologia , Cálcio/metabolismo , Endossomos/metabolismo , Proteostase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Arginina/metabolismo , Células CHO , Linhagem Celular Tumoral , Cricetulus , Células HeLa , Humanos , Lisossomos/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Ubiquitina/metabolismo
4.
Cell Mol Life Sci ; 79(9): 503, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36045259

RESUMO

Early recognition and enhanced degradation of misfolded proteins by the endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD) cause defective protein secretion and membrane targeting, as exemplified for Z-alpha-1-antitrypsin (Z-A1AT), responsible for alpha-1-antitrypsin deficiency (A1ATD) and F508del-CFTR (cystic fibrosis transmembrane conductance regulator) responsible for cystic fibrosis (CF). Prompted by our previous observation that decreasing Keratin 8 (K8) expression increased trafficking of F508del-CFTR to the plasma membrane, we investigated whether K8 impacts trafficking of soluble misfolded Z-A1AT protein. The subsequent goal of this study was to elucidate the mechanism underlying the K8-dependent regulation of protein trafficking, focusing on the ERAD pathway. The results show that diminishing K8 concentration in HeLa cells enhances secretion of both Z-A1AT and wild-type (WT) A1AT with a 13-fold and fourfold increase, respectively. K8 down-regulation triggers ER failure and cellular apoptosis when ER stress is jointly elicited by conditional expression of the µs heavy chains, as previously shown for Hrd1 knock-out. Simultaneous K8 silencing and Hrd1 knock-out did not show any synergistic effect, consistent with K8 acting in the Hrd1-governed ERAD step. Fractionation and co-immunoprecipitation experiments reveal that K8 is recruited to ERAD complexes containing Derlin2, Sel1 and Hrd1 proteins upon expression of Z/WT-A1AT and F508del-CFTR. Treatment of the cells with c407, a small molecule inhibiting K8 interaction, decreases K8 and Derlin2 recruitment to high-order ERAD complexes. This was associated with increased Z-A1AT secretion in both HeLa and Z-homozygous A1ATD patients' respiratory cells. Overall, we provide evidence that K8 acts as an ERAD modulator. It may play a scaffolding protein role for early-stage ERAD complexes, regulating Hrd1-governed retrotranslocation initiation/ubiquitination processes. Targeting K8-containing ERAD complexes is an attractive strategy for the pharmacotherapy of A1ATD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Degradação Associada com o Retículo Endoplasmático , Queratina-8/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HeLa , Humanos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
J Cell Sci ; 132(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30975917

RESUMO

Apical polarity of cystic fibrosis transmembrane conductance regulator (CFTR) is essential for solute and water transport in secretory epithelia and can be impaired in human diseases. Maintenance of apical polarity in the face of CFTR non-polarized delivery and inefficient apical retention of mutant CFTRs lacking PDZ-domain protein (NHERF1, also known as SLC9A3R1) interaction, remains enigmatic. Here, we show that basolateral CFTR delivery originates from biosynthetic (∼35%) and endocytic (∼65%) recycling missorting. Basolateral channels are retrieved via basolateral-to-apical transcytosis (hereafter denoted apical transcytosis), enhancing CFTR apical expression by two-fold and suppressing its degradation. In airway epithelia, CFTR transcytosis is microtubule-dependent but independent of Myo5B, Rab11 proteins and NHERF1 binding to its C-terminal DTRL motif. Increased basolateral delivery due to compromised apical recycling and accelerated internalization upon impaired NHERF1-CFTR association is largely counterbalanced by efficient CFTR basolateral internalization and apical transcytosis. Thus, transcytosis represents a previously unrecognized, but indispensable, mechanism for maintaining CFTR apical polarity that acts by attenuating its constitutive and mutation-induced basolateral missorting.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Transcitose/fisiologia , Animais , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Cães , Células Epiteliais/metabolismo , Humanos , Células Madin Darby de Rim Canino , Domínios PDZ , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
6.
EMBO Rep ; 19(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475881

RESUMO

Mutations in PINK1 cause autosomal recessive Parkinson's disease (PD), a neurodegenerative movement disorder. PINK1 is a kinase that acts as a sensor of mitochondrial damage and initiates Parkin-mediated clearance of the damaged organelle. PINK1 phosphorylates Ser65 in both ubiquitin and the ubiquitin-like (Ubl) domain of Parkin, which stimulates its E3 ligase activity. Autophosphorylation of PINK1 is required for Parkin activation, but how this modulates the ubiquitin kinase activity is unclear. Here, we show that autophosphorylation of Tribolium castaneum PINK1 is required for substrate recognition. Using enzyme kinetics and NMR spectroscopy, we reveal that PINK1 binds the Parkin Ubl with a 10-fold higher affinity than ubiquitin via a conserved interface that is also implicated in RING1 and SH3 binding. The interaction requires phosphorylation at Ser205, an invariant PINK1 residue (Ser228 in human). Using mass spectrometry, we demonstrate that PINK1 rapidly autophosphorylates in trans at Ser205. Small-angle X-ray scattering and hydrogen-deuterium exchange experiments provide insights into the structure of the PINK1 catalytic domain. Our findings suggest that multiple PINK1 molecules autophosphorylate first prior to binding and phosphorylating ubiquitin and Parkin.


Assuntos
Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Animais , Sítios de Ligação , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Biológicos , Modelos Moleculares , Mutação , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Ratos , Serina/química , Serina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/genética , Ubiquitinação , Domínios de Homologia de src
7.
Hum Mol Genet ; 26(24): 4873-4885, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040544

RESUMO

Approximately 50% of cystic fibrosis (CF) patients are heterozygous with a rare mutation on at least one allele. Several mutants exhibit functional defects, correctable by gating potentiators. Long-term exposure (≥24 h) to the only available potentiator drug, VX-770, leads to the biochemical and functional downregulation of F508del-CFTR both in immortalized and primary human airway cells, and possibly other CF mutants, attenuating its beneficial effect. Based on these considerations, we wanted to determine the effect of chronic VX-770 exposure on the functional and biochemical expression of rare CF processing/gating mutants in human airway epithelia. Expression of CFTR2 mutants was monitored in the human bronchial epithelial cell line (CFBE41o-) and in patient-derived conditionally reprogrammed bronchial and nasal epithelia by short-circuit current measurements, cell surface ELISA and immunoblotting in the absence or presence of CFTR modulators. The VX-770 half-maximal effective (EC50) concentration for G551D-CFTR activation was ∼0.63 µM in human nasal epithelia, implying that comparable concentration is required in the lung to attain clinical benefit. Five of the twelve rare CFTR2 mutants were susceptible to ∼20-70% downregulation by chronic VX-770 exposure with an IC50 of ∼1-20 nM and to destabilization by other investigational potentiators, thereby diminishing the primary functional gain of CFTR modulators. Thus, chronic exposure to VX-770 and preclinical potentiators can destabilize CFTR2 mutants in human airway epithelial models in a mutation and compound specific manner. This highlights the importance of selecting potentiator drugs with minimal destabilizing effects on CF mutants, advocating a precision medicine approach.


Assuntos
Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação , Quinolonas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Brônquios/metabolismo , Linhagem Celular , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo , Sinergismo Farmacológico , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ativação do Canal Iônico/genética , Pulmão/metabolismo , Modelos Moleculares , Mucosa Respiratória/metabolismo
8.
PLoS Biol ; 14(5): e1002462, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168400

RESUMO

The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Ribossômicas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Células Epiteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica , Ensaios de Triagem em Larga Escala , Humanos , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Dobramento de Proteína , Estabilidade Proteica , RNA Interferente Pequeno , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/genética
9.
J Biol Chem ; 292(27): 11499-11507, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490633

RESUMO

The enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) mediates quality control of glycoproteins in the endoplasmic reticulum by attaching glucose to N-linked glycan of misfolded proteins. As a sensor, UGGT ensures that misfolded proteins are recognized by the lectin chaperones and do not leave the secretory pathway. The structure of UGGT and the mechanism of its selectivity for misfolded proteins have been unknown for 25 years. Here, we used negative-stain electron microscopy and small-angle X-ray scattering to determine the structure of UGGT from Drosophila melanogaster at 18-Å resolution. Three-dimensional reconstructions revealed a cage-like structure with a large central cavity. Particle classification revealed flexibility that precluded determination of a high-resolution structure. Introduction of biotinylation sites into a fungal UGGT expressed in Escherichia coli allowed identification of the catalytic and first thioredoxin-like domains. We also used hydrogen-deuterium exchange mass spectrometry to map the binding site of an accessory protein, Sep15, to the first thioredoxin-like domain. The UGGT structural features identified suggest that the central cavity contains the catalytic site and is lined with hydrophobic surfaces. This enhances the binding of misfolded substrates with exposed hydrophobic residues and excludes folded proteins with hydrophilic surfaces. In conclusion, we have determined the UGGT structure, which enabled us to develop a plausible functional model of the mechanism for UGGT's selectivity for misfolded glycoproteins.


Assuntos
Glucosiltransferases/química , Dobramento de Proteína , Açúcares de Uridina Difosfato/química , Animais , Medição da Troca de Deutério , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
10.
J Biol Chem ; 292(50): 20657-20668, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061851

RESUMO

PD-L1 (programmed death ligand 1) and PD-L2 are cell-surface glycoproteins that interact with programmed death 1 (PD-1) on T cells to attenuate inflammation. PD-1 signaling has attracted intense interest for its role in a pathophysiological context: suppression of anti-tumor immunity. Similarly, vitamin D signaling has been increasingly investigated for its non-classical actions in stimulation of innate immunity and suppression of inflammatory responses. Here, we show that hormonal 1,25-dihydroxyvitamin D (1,25D) is a direct transcriptional inducer of the human genes encoding PD-L1 and PD-L2 through the vitamin D receptor, a ligand-regulated transcription factor. 1,25D stimulated transcription of the gene encoding PD-L1 in epithelial and myeloid cells, whereas the gene encoding the more tissue-restricted PD-L2 was regulated only in myeloid cells. We identified and characterized vitamin D response elements (VDREs) located in both genes and showed that 1,25D treatment induces cell-surface expression of PD-L1 in epithelial and myeloid cells. In co-culture experiments with primary human T cells, epithelial cells pretreated with 1,25D suppressed activation of CD4+ and CD8+ cells and inhibited inflammatory cytokine production in a manner that was abrogated by anti-PD-L1 blocking antibody. Consistent with previous observations of species-specific regulation of immunity by vitamin D, the VDREs are present in primate genes, but neither the VDREs nor the regulation by 1,25D is present in mice. These findings reinforce the physiological role of 1,25D in controlling inflammatory immune responses but may represent a double-edged sword, as they suggest that elevated vitamin D signaling in humans could suppress anti-tumor immunity.


Assuntos
Antígeno B7-H1/agonistas , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Proteína 2 Ligante de Morte Celular Programada 1/agonistas , Regulação para Cima/efeitos dos fármacos , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Vitamina D/análogos & derivados , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Especificidade de Órgãos , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vitamina D/farmacologia
11.
J Biol Chem ; 292(3): 771-785, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27895116

RESUMO

W1282X is the fifth most common cystic fibrosis transmembrane regulator (CFTR) mutation that causes cystic fibrosis. Here, we investigated the utility of a small molecule corrector/potentiator strategy, as used for ΔF508-CFTR, to produce functional rescue of the truncated translation product of the W1282X mutation, CFTR1281, without the need for read-through. In transfected cell systems, certain potentiators and correctors, including VX-809 and VX-770, increased CFTR1281 activity. To identify novel correctors and potentiators with potentially greater efficacy on CFTR1281, functional screens were done of ∼30,000 synthetic small molecules and drugs/nutraceuticals in CFTR1281-transfected cells. Corrector scaffolds of 1-arylpyrazole-4-arylsulfonyl-piperazine and spiro-piperidine-quinazolinone classes were identified with up to ∼5-fold greater efficacy than VX-809, some of which were selective for CFTR1281, whereas others also corrected ΔF508-CFTR. Several novel potentiator scaffolds were identified with efficacy comparable with VX-770; remarkably, a phenylsulfonamide-pyrrolopyridine acted synergistically with VX-770 to increase CFTR1281 function ∼8-fold over that of VX-770 alone, normalizing CFTR1281 channel activity to that of wild type CFTR. Corrector and potentiator combinations were tested in primary cultures and conditionally reprogrammed cells generated from nasal brushings from one W1282X homozygous subject. Although robust chloride conductance was seen with correctors and potentiators in homozygous ΔF508 cells, increased chloride conductance was not found in W1282X cells despite the presence of adequate transcript levels. Notwithstanding the negative data in W1282X cells from one human subject, we speculate that corrector and potentiator combinations may have therapeutic efficacy in cystic fibrosis caused by the W1282X mutation, although additional studies are needed on human cells from W1282X subjects.


Assuntos
Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação de Sentido Incorreto , Piperazinas/farmacologia , Quinolonas/farmacologia , Substituição de Aminoácidos , Animais , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Ratos , Ratos Endogâmicos F344
12.
Am J Physiol Lung Cell Mol Physiol ; 314(4): L555-L568, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351448

RESUMO

The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o- cells lacking functional CFTR (iCFTR-) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR+). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR+ cells, iCFTR- cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR- cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.


Assuntos
Proteína ADAM17/metabolismo , Brônquios/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Epitélio/patologia , Proteína ADAM17/genética , Anfirregulina/genética , Anfirregulina/metabolismo , Brônquios/metabolismo , Diferenciação Celular , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Citocinas/metabolismo , Epitélio/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Oxirredução , Fosforilação
13.
Artigo em Inglês | MEDLINE | ID: mdl-26856995

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Pancreatite/metabolismo , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Pancreatite/genética
14.
J Physiol ; 595(22): 6993-7008, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28905383

RESUMO

KEY POINTS: Characterisation of most mutations found in CLCN2 in patients with CC2L leukodystrophy show that they cause a reduction in function of the chloride channel ClC-2. GlialCAM, a regulatory subunit of ClC-2 in glial cells and involved in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), increases the activity of a ClC-2 mutant by affecting ClC-2 gating and by stabilising the mutant at the plasma membrane. The stabilisation of ClC-2 at the plasma membrane by GlialCAM depends on its localisation at cell-cell junctions. The membrane protein MLC1, which is defective in MLC, also contributes to the stabilisation of ClC-2 at the plasma membrane, providing further support for the view that GlialCAM, MLC1 and ClC-2 form a protein complex in glial cells. ABSTRACT: Mutations in CLCN2 have been recently identified in patients suffering from a type of leukoencephalopathy involving intramyelinic oedema. Here, we characterised most of these mutations that reduce the function of the chloride channel ClC-2 and impair its plasma membrane (PM) expression. Detailed biochemical and electrophysiological analyses of the Ala500Val mutation revealed that defective gating and increased cellular and PM turnover contributed to defective A500V-ClC-2 functional expression. Co-expression of the adhesion molecule GlialCAM, which forms a tertiary complex with ClC-2 and megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1), rescued the functional expression of the mutant by modifying its gating properties. GlialCAM also restored the PM levels of the channel by impeding its turnover at the PM. This rescue required ClC-2 localisation to cell-cell junctions, since a GlialCAM mutant with compromised junctional localisation failed to rescue the impaired stability of mutant ClC-2 at the PM. Wild-type, but not mutant, ClC-2 was also stabilised by MLC1 overexpression. We suggest that leukodystrophy-causing CLCN2 mutations reduce the functional expression of ClC-2, which is partly counteracted by GlialCAM/MLC1-mediated increase in the gating and stability of the channel.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico , Leucoencefalopatias/genética , Mutação , Animais , Canais de Cloro CLC-2 , Membrana Celular/metabolismo , Células Cultivadas , Canais de Cloreto/genética , Cloretos/metabolismo , Células HEK293 , Células HeLa , Humanos , Neuroglia/metabolismo , Estabilidade Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Junções Íntimas/metabolismo , Xenopus
15.
J Biol Chem ; 291(4): 2004-2017, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627832

RESUMO

A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Choque Térmico HSP27/genética , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
16.
J Biol Chem ; 291(4): 1854-1865, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627831

RESUMO

In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Hidrólise , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
17.
Gastroenterology ; 148(2): 427-39.e16, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447846

RESUMO

BACKGROUND & AIMS: Excessive consumption of ethanol is one of the most common causes of acute and chronic pancreatitis. Alterations to the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) also cause pancreatitis. However, little is known about the role of CFTR in the pathogenesis of alcohol-induced pancreatitis. METHODS: We measured CFTR activity based on chloride concentrations in sweat from patients with cystic fibrosis, patients admitted to the emergency department because of excessive alcohol consumption, and healthy volunteers. We measured CFTR levels and localization in pancreatic tissues and in patients with acute or chronic pancreatitis induced by alcohol. We studied the effects of ethanol, fatty acids, and fatty acid ethyl esters on secretion of pancreatic fluid and HCO3(-), levels and function of CFTR, and exchange of Cl(-) for HCO3(-) in pancreatic cell lines as well as in tissues from guinea pigs and CFTR knockout mice after administration of alcohol. RESULTS: Chloride concentrations increased in sweat samples from patients who acutely abused alcohol but not in samples from healthy volunteers, indicating that alcohol affects CFTR function. Pancreatic tissues from patients with acute or chronic pancreatitis had lower levels of CFTR than tissues from healthy volunteers. Alcohol and fatty acids inhibited secretion of fluid and HCO3(-), as well as CFTR activity, in pancreatic ductal epithelial cells. These effects were mediated by sustained increases in concentrations of intracellular calcium and adenosine 3',5'-cyclic monophosphate, depletion of adenosine triphosphate, and depolarization of mitochondrial membranes. In pancreatic cell lines and pancreatic tissues of mice and guinea pigs, administration of ethanol reduced expression of CFTR messenger RNA, reduced the stability of CFTR at the cell surface, and disrupted folding of CFTR at the endoplasmic reticulum. CFTR knockout mice given ethanol or fatty acids developed more severe pancreatitis than mice not given ethanol or fatty acids. CONCLUSIONS: Based on studies of human, mouse, and guinea pig pancreata, alcohol disrupts expression and localization of the CFTR. This appears to contribute to development of pancreatitis. Strategies to increase CFTR levels or function might be used to treat alcohol-associated pancreatitis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Etanol/toxicidade , Pancreatite/induzido quimicamente , Trifosfato de Adenosina/análise , Animais , Bicarbonatos/metabolismo , Cálcio/metabolismo , Canais de Cloreto/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cobaias , Humanos , Camundongos , Mutação , Dobramento de Proteína/efeitos dos fármacos
18.
Mediators Inflamm ; 2016: 7596531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27382190

RESUMO

The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.


Assuntos
Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
19.
Mol Pharmacol ; 88(4): 791-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26245207

RESUMO

Combination drug therapies under development for cystic fibrosis caused by the ∆F508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) include a "corrector" to improve its cellular processing and a "potentiator" to improve its chloride channel function. Recently, it was reported that the approved potentiator N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (Ivacaftor) reduces ∆F508-CFTR cellular stability and the efficacy of investigational correctors, including 3-(6-[([1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl) amino]-3-methyl-2-pyridinyl)-benzoic acid and 1-(2,2-difluoro-1,3-benzodioxol-5-yl)-N-(1-[(2R)-2,3-dihydroxypropyl]-6-fluoro-2-(2-hydroxy-1,1-dimethylethyl)-1H-indol-5-yl), which might contribute to the modest reported efficacy of combination therapy in clinical trials. Here, we report the identification and characterization of potentiators that do not interfere with ∆F508-CFTR stability or corrector action. High-throughput screening and structure-activity analysis identified several classes of potentiators that do not impair corrector action, including tetrahydrobenzothiophenes, thiooxoaminothiazoles, and pyrazole-pyrrole-isoxazoles. The most potent compounds have an EC(50) for ∆F508-CFTR potentiation down to 18 nM and do not reduce corrector efficacy in heterologous ∆F508-CFTR-expressing cells or primary cultures of ∆F508/∆F508 human bronchial epithelia. The ΔF508-CFTR potentiators also activated wild-type and G551D CFTR, albeit weakly. The efficacy of combination therapy for cystic fibrosis caused by the ∆F508 mutation may be improved by replacement of Ivacaftor with a potentiator that does not interfere with corrector action.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico/fisiologia , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Animais , Benzodioxóis/química , Benzodioxóis/metabolismo , Benzodioxóis/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/agonistas , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Relação Estrutura-Atividade
20.
Physiology (Bethesda) ; 29(4): 265-77, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24985330

RESUMO

The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases.


Assuntos
Membrana Celular/fisiologia , Homeostase/fisiologia , Proteínas de Membrana/fisiologia , Animais , Endocitose/fisiologia , Humanos , Lisossomos/fisiologia , Proteínas de Membrana/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa