RESUMO
The gut microbiota plays an important role in maintaining human health, as well as in the development of various pathologies, as indicated by a large amount of research. One of the manifestations of an imbalance in the gut microbiome composition is the appearance of various diseases or immune reactions, in particular, atopic dermatitis (AD) and/or food allergies (FA). In this research, using 16S NGS sequencing, it was found that the gut microbiome of children with food allergies and children with atopic dermatitis can be characterized as having higher inflammatory potential. Both groups exhibited an abundance of representatives from the Pasteurellaceae and Erysipelotrichaceae families, as well as a decrease in the relative number of representatives from the Barnesiellaceae family compared to healthy participants. In the group of participants with food allergies, there was a decrease in the relative number of Desulfovibrionaceae representatives and Bifidobacteriaceae family enrichment in relatively healthy participants. In addition, when comparing this group with patients with atopic dermatitis, it was revealed that a number of representatives of such families as Erysipelotrichaceae, Ruminococcaceae and Sutterellaceae prevailed. This information confirms that AD and FA correlate with changes in the composition of the gut microbiota. Further research is needed to determine the cause-effect connections and the effect of compounds derived from the microbiota on the AD and FA development and progression, as well as to create new probiotic drugs to prevent and modulate immune responses, including at an early age.
RESUMO
Background. Currently, it is known that the gut microbiota plays an important role in the functioning of the immune system, and a rebalancing of the bacterial community can arouse complex immune reactions and lead to immune-mediated responses in an organism, in particular, the development of atopic dermatitis (AD). Cytokines and chemokines are regulators of the innate and adaptive immune response and represent the most important biomarkers of the immune system. It is known that changes in cytokine profiles are a hallmark of many diseases, including atopy. However, it remains unclear how the bacterial imbalance disrupts the function of the immune response in AD. Objectives. We attempted to determine the role of gut bacteria in modulating cytokine pathways and their role in atopic inflammation. Methods. We sequenced the 16S rRNA gene from 50 stool samples of children aged 3-12 years who had confirmed atopic dermatitis, and 50 samples from healthy children to serve as a control group. To evaluate the immune status, we conducted a multiplex immunofluorescence assay and measured the levels of 41 cytokines and chemokines in the serum of all participants. Results. To find out whether changes in the composition of the gut microbiota were significantly associated with changes in the level of inflammatory cytokines, a correlation was calculated between each pair of bacterial family and cytokine. In the AD group, 191 correlations were significant (Spearman's correlation coefficient, p ≤ 0.05), 85 of which were positive and 106 which were negative. Conclusions. It has been demonstrated that intestinal dysbiosis is associated with alterations in cytokine profiles, specifically an increase in proinflammatory cytokine concentrations. This may indicate a systemic impact of these conditions, leading to an imbalance in the immune system's response to the Th2 type. As a result, atopic conditions may develop. Additionally, a correlation between known AD biomarkers (IL-5, IL-8, IL-13, CCL22, IFN-γ, TNF-α) and alterations in the abundance of bacterial families (Pasteurellaceae, Barnesiellaceae, Eubacteriaceae) was observed.
RESUMO
Traumatic brain injury (TBI) heavily impacts the body: it damages the brain tissue and the peripheral nervous system and shifts homeostasis in many types of tissue. An acute brain injury compromises the "brain-gut-microbiome axis", a well-balanced network formed by the brain, gastrointestinal tract, and gut microbiome, which has a complex effect: damage to the brain alters the composition of the microbiome; the altered microbiome affects TBI severity, neuroplasticity, and metabolic pathways through various bacterial metabolites. We modeled TBI in rats. Using a bioinformatics approach, we sought to identify correlations between the gut microbiome composition, TBI severity, the rate of neurological function recovery, and blood metabolome. We found that the TBI caused changes in the abundance of 26 bacterial genera. The most dramatic change was observed in the abundance of Agathobacter species. The TBI also altered concentrations of several metabolites, specifically citrulline and tryptophan. We found no significant correlations between TBI severity and the pre-existing gut microbiota composition or blood metabolites. However, we discovered some differences between the two groups of subjects that showed high and low rates of neurological function recovery, respectively. The present study highlights the role of the brain-gut-microbiome axis in TBI.