Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Genes Dev ; 28(19): 2077-89, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25240060

RESUMO

The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1-TLC1-Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Ciclo Celular , Imunoprecipitação , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
2.
Nucleic Acids Res ; 47(13): 6826-6841, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31114918

RESUMO

Proliferating cell nuclear antigen (PCNA) is a sliding clamp that acts as a central co-ordinator for mismatch repair (MMR) as well as DNA replication. Loss of Elg1, the major subunit of the PCNA unloader complex, causes over-accumulation of PCNA on DNA and also increases mutation rate, but it has been unclear if the two effects are linked. Here we show that timely removal of PCNA from DNA by the Elg1 complex is important to prevent mutations. Although premature unloading of PCNA generally increases mutation rate, the mutator phenotype of elg1Δ is attenuated by PCNA mutants PCNA-R14E and PCNA-D150E that spontaneously fall off DNA. In contrast, the elg1Δ mutator phenotype is exacerbated by PCNA mutants that accumulate on DNA due to enhanced electrostatic PCNA-DNA interactions. Epistasis analysis suggests that PCNA over-accumulation on DNA interferes with both MMR and MMR-independent process(es). In elg1Δ, over-retained PCNA hyper-recruits the Msh2-Msh6 mismatch recognition complex through its PCNA-interacting peptide motif, causing accumulation of MMR intermediates. Our results suggest that PCNA retention controlled by the Elg1 complex is critical for efficient MMR: PCNA needs to be on DNA long enough to enable MMR, but if it is retained too long it interferes with downstream repair steps.


Assuntos
Proteínas de Transporte/fisiologia , Reparo de Erro de Pareamento de DNA , DNA Fúngico/metabolismo , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Replicação do DNA , DNA Fúngico/genética , Proteínas de Ligação a DNA/metabolismo , Edição de Genes , Genes Fúngicos , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Conformação de Ácido Nucleico , Mutação Puntual , Antígeno Nuclear de Célula em Proliferação/fisiologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
3.
Proc Natl Acad Sci U S A ; 115(41): 10315-10320, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249661

RESUMO

ssDNA, which is involved in numerous aspects of chromosome biology, is managed by a suite of proteins with tailored activities. The majority of these proteins bind ssDNA indiscriminately, exhibiting little apparent sequence preference. However, there are several notable exceptions, including the Saccharomyces cerevisiae Cdc13 protein, which is vital for yeast telomere maintenance. Cdc13 is one of the tightest known binders of ssDNA and is specific for G-rich telomeric sequences. To investigate how these two different biochemical features, affinity and specificity, contribute to function, we created an unbiased panel of alanine mutations across the Cdc13 DNA-binding interface, including several aromatic amino acids that play critical roles in binding activity. A subset of mutant proteins exhibited significant loss in affinity in vitro that, as expected, conferred a profound loss of viability in vivo. Unexpectedly, a second category of mutant proteins displayed an increase in specificity, manifested as an inability to accommodate changes in ssDNA sequence. Yeast strains with specificity-enhanced mutations displayed a gradient of viability in vivo that paralleled the loss in sequence tolerance in vitro, arguing that binding specificity can be fine-tuned to ensure optimal function. We propose that DNA binding by Cdc13 employs a highly cooperative interface whereby sequence diversity is accommodated through plastic binding modes. This suggests that sequence specificity is not a binary choice but rather is a continuum. Even in proteins that are thought to be specific nucleic acid binders, sequence tolerance through the utilization of multiple binding modes may be a broader phenomenon than previously appreciated.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Sítios de Ligação , Mutagênese Sítio-Dirigida , Mutação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química
4.
Genes Dev ; 26(11): 1123-7, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661225

RESUMO

Most human cells lack telomerase, the enzyme that elongates telomeres. The resulting telomere erosion eventually limits cell proliferation and tissue renewal, thereby impacting age-dependent pathologies. In this issue of Genes & Development, a technical tour-de-force by Chow and colleagues (pp. 1167-1178) reveals a highly choreographed sequence of events that processes newly replicated chromosome ends into mature telomeres. This sheds new light on an underappreciated contribution to telomere dynamics that may be as important as telomerase in dictating the correlation between life span and telomere length.


Assuntos
Replicação do DNA , Encurtamento do Telômero , Humanos , Masculino
5.
Proc Natl Acad Sci U S A ; 111(1): 214-8, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344315

RESUMO

Telomerase is essential for continuous cellular proliferation. Substantial insights have come from studies of budding yeast telomerase, which consists of a catalytic core in association with two regulatory proteins, ever shorter telomeres 1 and 3 (Est1 and Est3). We report here a high-resolution structure of the Est3 telomerase subunit determined using a recently developed strategy that combines minimal NMR experimental data with Rosetta de novo structure prediction algorithms. Est3 adopts an overall protein fold which is structurally similar to that adopted by the shelterin component TPP1. However, the characteristics of the surface of the experimentally determined Est3 structure are substantially different from those predicted by prior homology-based models of Est3. Structure-guided mutagenesis of the complete surface of the Est3 protein reveals two adjacent patches on a noncanonical face of the protein that differentially mediate telomere function. Mapping these two patches on the Est3 structure defines a set of shared features between Est3 and HsTPP1, suggesting an analogous multifunctional surface on TPP1.


Assuntos
Replicação do DNA , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerase/química , Telomerase/genética , Telômero/metabolismo , Algoritmos , Domínio Catalítico , Proliferação de Células , Clonagem Molecular , Análise por Conglomerados , Teste de Complementação Genética , Humanos , Espectroscopia de Ressonância Magnética , Mutagênese , Mutação de Sentido Incorreto , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Serina Proteases/química , Complexo Shelterina , Proteínas de Ligação a Telômeros
6.
RNA ; 18(9): 1597-604, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22847816

RESUMO

In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.


Assuntos
RNA/química , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerase/química , Telomerase/metabolismo , Sequência de Bases , Sequência Conservada , Expressão Gênica , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA Fúngico/química , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética
7.
Biochemistry ; 52(7): 1131-3, 2013 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-23390975

RESUMO

In budding yeast, association of the Est1 regulatory protein with telomerase is thought to be limited to the late S phase, when telomere elongation occurs. By monitoring the stoichiometry of telomerase subunits, we show instead that a telomerase complex containing Est1 is assembled much earlier in the cell cycle. We also report a biochemical interaction between Est1 and the telomere binding protein Cdc13 that recapitulates the previously observed genetic relationship between EST1 and CDC13. This supports a model in which regulated binding of Cdc13 to chromosome termini dictates subsequent interaction of a recruitment-competent telomerase complex with telomeres.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Cromossomos Fúngicos , Epitopos/genética , Epitopos/metabolismo , Mutação , Fase S , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/imunologia , Telomerase/genética , Telomerase/imunologia , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética
8.
Nat Struct Mol Biol ; 15(9): 990-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19172754

RESUMO

The Ever shorter telomeres 3 (Est3) protein is a small regulatory subunit of yeast telomerase which is dispensable for enzyme catalysis but essential for telomere replication in vivo. Using structure prediction combined with in vivo characterization, we show here that Est3 consists of a predicted OB (oligosaccharide/oligonucleotide binding)-fold. We used mutagenesis of predicted surface residues to generate a functional map of one surface of Est3, identifying a site that mediates association with the telomerase complex. Unexpectedly, the predicted OB-fold of Est3 is structurally similar to the OB-fold of the human TPP1 protein, despite the fact that Est3 and TPP1, as components of telomerase and a telomere-capping complex, respectively, perform functionally distinct tasks at chromosome ends. Our analysis of Est3 may be instructive in generating comparable missense mutations on the surface of the OB-fold domain of TPP1.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Telomerase/química , Telomerase/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Proteínas Fúngicas/genética , Fungos/genética , Fungos/metabolismo , Genes Fúngicos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Complexo Shelterina , Telomerase/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
9.
Nat Struct Mol Biol ; 14(3): 208-14, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293872

RESUMO

Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , DNA Fúngico/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato , Proteínas de Ligação a Telômeros/química
10.
Nucleic Acids Res ; 38(7): 2279-90, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20047960

RESUMO

The Est3 subunit of yeast telomerase, which adopts a predicted OB-fold, is essential for telomere replication. To assess the possible contributions that Est3 might make to enzyme catalysis, we compared telomerase activity from wild type and est3-Delta strains of Saccharomyces castellii, which revealed that loss of the Est3 subunit results in a 2- to 3-fold decline in nucleotide addition. This effect was not primer-specific, based on assessment of a panel of primers that spanned the template of the S. castellii telomerase RNA. Furthermore, using nuclear magnetic resonance chemical shift perturbation, no chemical shift change was observed at any site in the protein upon addition of single-stranded DNA, arguing against a role for Est3 in recognition of telomeric substrates by telomerase. Addition of exogenous Est3 protein, including mutant Est3 proteins that are severely impaired for telomere replication in vivo, fully restored activity in est3-Delta telomerase reactions. Thus, Est3 performs an in vivo regulatory function in telomere replication, which is distinct from any potential contribution that Est3 might make to telomerase activity.


Assuntos
Proteínas Fúngicas/fisiologia , Saccharomyces/enzimologia , Telomerase/fisiologia , Telômero/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Subunidades Proteicas/fisiologia , Saccharomyces/genética , Telomerase/genética , Telomerase/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(46): 19298-303, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19884503

RESUMO

Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to support a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.


Assuntos
Proteínas de Ciclo Celular/química , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Ligação a Telômeros/química , Telômero/metabolismo , Motivos de Aminoácidos , Proteínas de Ciclo Celular/genética , Sequência Conservada , Cristalografia por Raios X , Evolução Molecular , Estrutura Terciária de Proteína , Proteína de Replicação A/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética
12.
Biochemistry ; 50(29): 6289-91, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21668015

RESUMO

In the budding yeast Saccharomyces cerevisiae, chromosome end protection is provided by a heterotrimeric complex composed of Cdc13 in association with the RPA-like proteins Stn1 and Ten1. We report here that the high affinity and specificity of the S. cerevisiae Cdc13 DNA binding domain for single-stranded telomeric DNA are not widely shared by other fungal Cdc13 proteins, suggesting that restriction of this complex to telomeres may be limited to the Saccharomyces clade. We propose that the evolutionarily conserved task of Stn1 and Ten1 (and their associated large subunit) is a genome-wide role in DNA replication rather than a telomere-dedicated activity.


Assuntos
DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Bases , Candida albicans/metabolismo , Cinética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Curr Opin Cell Biol ; 14(3): 351-6, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12067658

RESUMO

Telomeres must protect chromosome ends from being recognized and processed as double-strand breaks. Identification of the factors involved in end protection, and the mechanisms by which they "cap" chromosome termini, is crucial in understanding how the cell distinguishes between a double-strand break and a normal telomere end. Recent work has characterized the similarities and potential differences between the pathways utilized by multiple organisms in maintaining telomere ends. One unifying concept that has clearly emerged is that chromosome-end protection is necessary in maintaining genetic stability and preventing oncogenesis.


Assuntos
Antígenos Nucleares , DNA Helicases , Telômero/genética , Cromossomos Fúngicos , Cromossomos Humanos , Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Humanos , Autoantígeno Ku , Modelos Genéticos , Proteínas Nucleares/fisiologia , Saccharomycetales/genética
14.
ACS Chem Biol ; 14(8): 1767-1779, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31268677

RESUMO

A bifurcation of the mevalonate (MVA) pathway was recently discovered in bacteria of the Chloroflexi phylum. In this alternative route for the biosynthesis of isopentenylpyrophosphate (IPP), the penultimate step is the decarboxylation of (R)-mevalonate 5-phosphate ((R)-MVAP) to isopentenyl phosphate (IP), which is followed by the ATP-dependent phosphorylation of IP to IPP catalyzed by isopentenyl phosphate kinase (IPK). Notably, the decarboxylation reaction is catalyzed by mevalonate 5-phosphate decarboxylase (MPD), which shares considerable sequence similarity with mevalonate diphosphate decarboxylase (MDD) of the classical MVA pathway. We show that an enzyme originally annotated as an MDD from the Chloroflexi bacterium Anaerolinea thermophila possesses equal catalytic efficiency for (R)-MVAP and (R)-mevalonate 5-diphosphate ((R)-MVAPP). Further, the molecular basis for this dual specificity is revealed by near atomic-resolution X-ray crystal structures of A. thermophila MPD/MDD bound to (R)-MVAP or (R)-MVAPP. These findings, when combined with sequence and structural comparisons of this bacterial enzyme, functional MDDs, and several putative MPDs, delineate key active-site residues that confer substrate specificity and functionally distinguish MPD and MDD enzyme classes. Extensive sequence analyses identified functional MPDs in the halobacteria class of archaea that had been annotated as MDDs. Finally, no eukaryotic MPD candidates were identified, suggesting the absence of the alternative MVA (altMVA) pathway in all eukaryotes, including, paradoxically, plants, which universally encode a structural and functional homologue of IPK. Additionally, we have developed a viable engineered strain of Saccharomyces cerevisiae as an in vivo metabolic model and a synthetic biology platform for enzyme engineering and terpene biosynthesis in which the classical MVA pathway has been replaced with the altMVA pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carboxiliases/química , Carboxiliases/genética , Catálise , Domínio Catalítico , Chloroflexi/enzimologia , Descarboxilação , Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Ligação Proteica , Engenharia de Proteínas , Saccharomyces cerevisiae/genética , Especificidade por Substrato
15.
Genetics ; 208(1): 97-110, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187507

RESUMO

A leading objective in biology is to identify the complete set of activities that each gene performs in vivo In this study, we have asked whether a genetic approach can provide an efficient means of achieving this goal, through the identification and analysis of a comprehensive set of separation-of-function (sof-) mutations in a gene. Toward this goal, we have subjected the Saccharomyces cerevisiae EST1 gene, which encodes a regulatory subunit of telomerase, to intensive mutagenesis (with an average coverage of one mutation for every 4.5 residues), using strategies that eliminated those mutations that disrupted protein folding/stability. The resulting set of sof- mutations defined four biochemically distinct activities for the Est1 telomerase protein: two temporally separable steps in telomerase holoenzyme assembly, a telomerase recruitment activity, and a fourth newly discovered regulatory function. Although biochemically distinct, impairment of each of these four different activities nevertheless conferred a common phenotype (critically short telomeres) comparable to that of an est1-∆ null strain. This highlights the limitations of gene deletions, even for nonessential genes; we suggest that employing a representative set of sof- mutations for each gene in future high- and low-throughput investigations will provide deeper insights into how proteins interact inside the cell.


Assuntos
Mutagênese , Subunidades Proteicas/genética , Telomerase/genética , Sequência de Aminoácidos , Modelos Biológicos , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Telomerase/química , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
16.
Mol Cell Biol ; 23(22): 8202-15, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14585978

RESUMO

The Ku heterodimer functions at two kinds of DNA ends: telomeres and double-strand breaks. The role that Ku plays at these two classes of termini must be distinct, because Ku is required for accurate and efficient joining of double-strand breaks while similar DNA repair events are normally prohibited at chromosome ends. Toward defining these functional differences, we have identified eight mutations in the large subunit of the Saccharomyces cerevisiae Ku heterodimer (YKU80) which retain the ability to repair double-strand breaks but are severely impaired for chromosome end protection. Detailed characterization of these mutations, referred to as yku80(tel) alleles, has revealed that Ku performs functionally distinct activities at subtelomeric chromatin versus the end of the chromosome, and these activities are separable from Ku's role in telomere length regulation. While at the chromosome terminus, we propose that Ku participates in two different activities: it facilitates telomerase-mediated G-strand synthesis, thereby contributing to telomere length regulation, and it separately protects against resection of the C-strand, thereby contributing to protection of chromosome termini. Furthermore, we propose that the Ku heterodimer performs discrete sets of functions at chromosome termini and at duplex subtelomeric chromatin, via separate interactions with these two locations. Based on homology modeling with the human Ku structure, five of the yku80(tel) alleles mutate residues that are conserved between the yeast and human Ku80 proteins, suggesting that these mutations probe activities that are shared between yeast and humans.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Antígenos Nucleares/química , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Quebra Cromossômica , Cromossomos Fúngicos/metabolismo , Sequência Conservada , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Humanos , Autoantígeno Ku , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Telômero/metabolismo
17.
Mol Cell Biol ; 24(17): 7720-36, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15314178

RESUMO

Telomere synthesis in most organisms depends on the action of the telomerase enzyme, which contains an RNA subunit that is stably associated with the reverse transcriptase subunit as well as additional telomerase proteins. In the budding yeast Saccharomyces cerevisiae, several structural domains that are responsible for mediating protein interactions with the telomerase RNA TLC1 have been identified. We report here the identification and characterization of a TLC1 stem-loop that is required for its interaction with the Est2 reverse transcriptase protein. This hairpin, which does not contain any bulges in the duplex stem that commonly mediate protein-RNA interaction, appears to be a part of a larger structure, as nucleotides immediately to either side of this stem-loop contribute to the interaction of TLC1 with the Est2 protein. Surprisingly, replacement of a 95-nucleotide region of the yeast telomerase RNA that is required for Est2 interaction with a 39-nucleotide pseudoknot from a distantly related telomerase RNA results in a functional telomerase enzyme. These findings suggest that the ability of the budding yeast reverse transcriptase to associate with the telomerase RNA depends on a highly structured region rather than specific sequence elements.


Assuntos
Conformação de Ácido Nucleico , RNA Fúngico/química , Saccharomyces cerevisiae/enzimologia , Telomerase/genética , Telomerase/metabolismo , Animais , Sequência de Bases , Domínio Catalítico , Senescência Celular , Proteínas de Ligação a DNA , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Telômero/metabolismo
18.
Structure ; 11(9): 1049-50, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12962623

RESUMO

Telomere maintenance and end protection are essential for the survival and proliferation of eukaryotic cells, leading to the prediction that components of this system would be highly conserved. In practice, however, evidence for homology among these factors has been elusive, and, in the case of the known end-protection proteins, evolutionary relationships have been postulated largely on the basis of protein structural and functional similarity alone. Here we report support from sequence profile analyses for a significant and specific evolutionary relationship among OB-fold telomeric end-protection factors.


Assuntos
Homologia de Sequência do Ácido Nucleico , Telômero/química , Bases de Dados de Proteínas , Células Eucarióticas/química , Evolução Molecular , Plantas , Saccharomyces cerevisiae , Alinhamento de Sequência , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo
19.
Oncogene ; 21(4): 522-31, 2002 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-11850777

RESUMO

Recombination-dependent maintenance of telomeres, first discovered in budding yeast, has revealed an alternative pathway for telomere maintenance that does not require the enzyme telomerase. Experiments conducted in two budding yeasts, S. cerevisiae and K. lactis, have shown recombination can replenish terminal G-rich telomeric tracts that would otherwise shorten in the absence of telomerase, as well as disperse and amplify sub-telomeric repeat elements. Investigation of the genetic requirements for this process have revealed that at least two different recombination pathways, defined by RAD50 and RAD51, can promote telomere maintenance. Although critically short telomeres are very recombinogenic, recombination among telomeres that have only partially shortened in the absence of telomerase can also contribute to telomerase-independent survival. These observations provide new insights into the mechanism(s) by which recombination can restore telomere function in yeast, and suggest future experiments for the investigation of potentially similar pathways in human cells.


Assuntos
Recombinação Genética , Saccharomycetales/genética , Telômero/genética , Replicação do DNA , DNA Fúngico/genética , Humanos , Modelos Genéticos , Sequências Repetitivas de Ácido Nucleico , Telomerase/fisiologia , Telômero/fisiologia
20.
Genetics ; 162(3): 1101-15, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12454059

RESUMO

The telomerase-associated Est1 protein of Saccharomyces cerevisiae mediates enzyme access by bridging the interaction between the catalytic core of telomerase and the telomere-binding protein Cdc13. In addition to recruiting telomerase, Est1 may act as a positive regulator of telomerase once the enzyme has been brought to the telomere, as previously suggested by the inability of a Cdc13-Est2 fusion protein to promote extensive telomere elongation in an est1-Delta strain. We report here three classes of mutant Est1 proteins that retain association with the telomerase enzyme but confer different in vivo consequences. Class 1 mutants display a telomere replication defect but are capable of promoting extensive telomere elongation in the presence of a Cdc13-Est2 fusion protein, consistent with a defect in telomerase recruitment. Class 2 mutants fail to elongate telomeres even in the presence of the Cdc13-Est2 fusion, which is the phenotype predicted for a defect in the proposed second regulatory function of EST1. A third class of mutants impairs an activity of Est1 that is potentially required for the Ku-mediated pathway of telomere length maintenance. The isolation of mutations that perturb separate functions of Est1 demonstrates that a telomerase holoenzyme subunit can contribute multiple regulatory roles to telomere length maintenance.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Sequência de Aminoácidos , Aminoácidos Acídicos , Aminoácidos Básicos , Sequência Conservada , Análise Mutacional de DNA , Regulação Fúngica da Expressão Gênica , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa