Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37014062

RESUMO

In the polarity/protrusion model of growth cone repulsion from UNC-6/netrin, UNC-6 first polarizes the growth cone of the VD motor neuron axon via the UNC-5 receptor, and then regulates protrusion asymmetrically across the growth cone based on this polarity. UNC-6 stimulates protrusion dorsally through the UNC-40/DCC receptor, and inhibits protrusion ventrally through UNC-5, resulting in net dorsal growth. Previous studies showed that UNC-5 inhibits growth cone protrusion via the flavin monooxygenases and potential destabilization of F-actin, and via UNC-33/CRMP and restriction of microtubule plus-end entry into the growth cone. We show that UNC-5 inhibits protrusion through a third mechanism involving TOM-1/tomosyn. A short isoform of TOM-1 inhibited protrusion downstream of UNC-5, and a long isoform had a pro-protrusive role. TOM-1/tomosyn inhibits formation of the SNARE complex. We show that UNC-64/syntaxin is required for growth cone protrusion, consistent with a role of TOM-1 in inhibiting vesicle fusion. Our results are consistent with a model whereby UNC-5 utilizes TOM-1 to inhibit vesicle fusion, resulting in inhibited growth cone protrusion, possibly by preventing the growth cone plasma membrane addition required for protrusion.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Axônios/metabolismo , Netrinas/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Netrina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Moléculas de Adesão Celular/metabolismo
2.
BMC Genomics ; 23(1): 13, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34986795

RESUMO

Migration of neuroblasts and neurons from their birthplace is central to the formation of neural circuits and networks. ETR-1 is the Caenorhabditis elegans homolog of the CELF1 (CUGBP, ELAV-like family 1) RNA-processing factor involved in neuromuscular disorders. etr-1 regulates body wall muscle differentiation. Our previous work showed that etr-1 in muscle has a non-autonomous role in neuronal migration, suggesting that ETR-1 is involved in the production of a signal emanating from body wall muscle that controls neuroblast migration and that interacts with Wnt signaling. etr-1 is extensively alternatively-spliced, and we identified the viable etr-1(lq61) mutant, caused by a stop codon in alternatively-spliced exon 8 and only affecting etr-1 isoforms containing exon 8. We took advantage of viable etr-1(lq61) to identify potential RNA targets of ETR-1 in body wall muscle using a combination of fluorescence activated cell sorting (FACS) of body wall muscles from wild-type and etr-1(lq61) and subsequent RNA-seq. This analysis revealed genes whose splicing and transcript levels were controlled by ETR-1 exon 8 isoforms, and represented a broad spectrum of genes involved in muscle differentiation, myofilament lattice structure, and physiology. Genes with transcripts underrepresented in etr-1(lq61) included those involved in ribosome function and translation, similar to potential CELF1 targets identified in chick cardiomyocytes. This suggests that at least some targets of ETR-1 might be conserved in vertebrates, and that ETR-1 might generally stimulate translation in muscles. As proof-of-principle, a functional analysis of a subset of ETR-1 targets revealed genes involved in AQR and PQR neuronal migration. One such gene, lev-11/tropomyosin, requires ETR-1 for alternative splicing, and another, unc-52/perlecan, requires ETR-1 for the production of long isoforms containing 3' exons. In sum, these studies identified gene targets of ETR-1/CELF1 in muscles, which included genes involved in muscle development and physiology, and genes with novel roles in neuronal migration.


Assuntos
Caenorhabditis elegans , Transcriptoma , Processamento Alternativo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ligação a RNA/metabolismo
3.
PLoS Genet ; 15(6): e1007960, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31233487

RESUMO

UNC-6/Netrin is a conserved axon guidance cue that directs growth cone migrations in the dorsal-ventral axis of C. elegans and in the vertebrate spinal cord. UNC-6/Netrin is expressed in ventral cells, and growth cones migrate ventrally toward or dorsally away from UNC-6/Netrin. Recent studies of growth cone behavior during outgrowth in vivo in C. elegans have led to a polarity/protrusion model in directed growth cone migration away from UNC-6/Netrin. In this model, UNC-6/Netrin first polarizes the growth cone via the UNC-5 receptor, leading to dorsally biased protrusion and F-actin accumulation. UNC-6/Netrin then regulates protrusion based on this polarity. The receptor UNC-40/DCC drives protrusion dorsally, away from the UNC-6/Netrin source, and the UNC-5 receptor inhibits protrusion ventrally, near the UNC-6/Netrin source, resulting in dorsal migration. UNC-5 inhibits protrusion in part by excluding microtubules from the growth cone, which are pro-protrusive. Here we report that the RHO-1/RhoA GTPase and its activator GEF RHGF-1 inhibit growth cone protrusion and MT accumulation in growth cones, similar to UNC-5. However, growth cone polarity of protrusion and F-actin were unaffected by RHO-1 and RHGF-1. Thus, RHO-1 signaling acts specifically as a negative regulator of protrusion and MT accumulation, and not polarity. Genetic interactions are consistent with RHO-1 and RHGF-1 acting with UNC-5, as well as with a parallel pathway, to regulate protrusion. The cytoskeletal interacting molecule UNC-33/CRMP was required for RHO-1 activity to inhibit MT accumulation, suggesting that UNC-33/CRMP might act downstream of RHO-1. In sum, these studies describe a new role of RHO-1 and RHGF-1 in regulation of growth cone protrusion by UNC-6/Netrin.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Netrinas/genética , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/genética , Animais , Orientação de Axônios/genética , Axônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Movimento Celular/genética , Polaridade Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Cones de Crescimento/metabolismo , Microtúbulos/genética , Fatores de Crescimento Neural/genética , Fenótipo , Pseudópodes/genética , Receptores de Superfície Celular/genética , Transdução de Sinais/genética
4.
PLoS Genet ; 13(8): e1006998, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859089

RESUMO

The guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5:UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5:UNC-40 repulsive receptor involves Rac GTPases, the Rac GTP exchange factor UNC-73/Trio, and the cytoskeletal regulator UNC-33/CRMP, which mediates Semaphorin-induced growth cone collapse in other systems. The multidomain flavoprotein monooxygenase (FMO) MICAL (Molecule Interacting with CasL) also mediates growth cone collapse in response to Semaphorin by directly oxidizing F-actin, resulting in depolymerization. The C. elegans genome does not encode a multidomain MICAL-like molecule, but does encode five flavin monooxygenases (FMO-1, -2, -3, -4, and 5) and another molecule, EHBP-1, similar to the non-FMO portion of MICAL. Here we show that FMO-1, FMO-4, FMO-5, and EHBP-1 may play a role in UNC-6/Netrin directed repulsive guidance mediated through UNC-40 and UNC-5 receptors. Mutations in fmo-1, fmo-4, fmo-5, and ehbp-1 showed VD/DD axon guidance and branching defects, and variably enhanced unc-40 and unc-5 VD/DD axon guidance defects. Developing growth cones in vivo of fmo-1, fmo-4, fmo-5, and ehbp-1 mutants displayed excessive filopodial protrusion, and transgenic expression of FMO-5 inhibited growth cone protrusion. Mutations suppressed growth cone inhibition caused by activated UNC-40 and UNC-5 signaling, and activated Rac GTPase CED-10 and MIG-2, suggesting that these molecules are required downstream of UNC-6/Netrin receptors and Rac GTPases. From these studies we conclude that FMO-1, FMO-4, FMO-5, and EHBP-1 represent new players downstream of UNC-6/Netrin receptors and Rac GTPases that inhibit growth cone filopodial protrusion in repulsive axon guidance.


Assuntos
Orientação de Axônios/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Oxigenases de Função Mista/genética , Proteínas do Tecido Nervoso/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Dinitrocresóis/metabolismo , Mutação , Netrinas , Pseudópodes/genética , Pseudópodes/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/genética
5.
Development ; 141(22): 4395-405, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25371370

RESUMO

UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40-UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopodial protrusion involved in axon repulsion. We show that the Rac-like GTPases CED-10 and MIG-2, the Rac GTP exchange factor UNC-73/Trio, UNC-44/Ankyrin and UNC-33/CRMP act in inhibitory UNC-6 signaling. These molecules were required for the normal limitation of filopodial protrusion in developing growth cones and for inhibition of growth cone filopodial protrusion caused by activated MYR::UNC-40 and MYR::UNC-5 receptor signaling. Epistasis studies using activated CED-10 and MIG-2 indicated that UNC-44 and UNC-33 act downstream of the Rac-like GTPases in filopodial inhibition. UNC-73, UNC-33 and UNC-44 did not affect the accumulation of full-length UNC-5::GFP and UNC-40::GFP in growth cones, consistent with a model in which UNC-73, UNC-33 and UNC-44 influence cytoskeletal function during growth cone filopodial inhibition.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Moléculas de Adesão Celular/metabolismo , Cones de Crescimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/fisiologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Animais , Epistasia Genética/fisiologia , Fatores de Crescimento Neural/metabolismo , Netrinas , Transdução de Sinais/genética , Imagem com Lapso de Tempo , Proteínas rac de Ligação ao GTP/metabolismo
6.
Dev Biol ; 392(2): 141-52, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24954154

RESUMO

Directed migration of neurons is critical in the normal and pathological development of the brain and central nervous system. In Caenorhabditis elegans, the bilateral Q neuroblasts, QR on the right and QL on the left, migrate anteriorly and posteriorly, respectively. Initial protrusion and migration of the Q neuroblasts is autonomously controlled by the transmembrane proteins UNC-40/DCC, PTP-3/LAR, and MIG-21. As QL migrates posteriorly, it encounters and EGL-20/Wnt signal that induces MAB-5/Hox expression that drives QL descendant posterior migration. QR migrates anteriorly away from EGL-20/Wnt and does not activate MAB-5/Hox, resulting in anterior QR descendant migration. A forward genetic screen for new mutations affecting initial Q migrations identified alleles of cdh-4, which caused defects in both QL and QR directional migration similar to unc-40, ptp-3, and mig-21. Previous studies showed that in QL, PTP-3/LAR and MIG-21 act in a pathway in parallel to UNC-40/DCC to drive posterior QL migration. Here we show genetic evidence that CDH-4 acts in the PTP-3/MIG-21 pathway in parallel to UNC-40/DCC to direct posterior QL migration. In QR, the PTP-3/MIG-21 and UNC-40/DCC pathways mutually inhibit each other, allowing anterior QR migration. We report here that CDH-4 acts in both the PTP-3/MIG-21 and UNC-40/DCC pathways in mutual inhibition in QR, and that CDH-4 acts cell-non-autonomously. Interaction of CDH-4 with UNC-40/DCC in QR but not QL represents an inherent left-right asymmetry in the Q cells, the nature of which is not understood. We conclude that CDH-4 might act as a permissive signal for each Q neuroblast to respond differently to anterior-posterior guidance information based upon inherent left-right asymmetries in the Q neuroblasts.


Assuntos
Caderinas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Sistema Nervoso Central/embriologia , Células-Tronco Neurais/fisiologia , Transdução de Sinais/fisiologia , Animais , Caderinas/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/metabolismo , Componentes do Gene , Proteínas de Membrana/metabolismo , Microscopia Confocal , Células-Tronco Neurais/metabolismo , Proteínas Tirosina Fosfatases
7.
PLoS Genet ; 8(4): e1002665, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570618

RESUMO

The mechanisms linking guidance receptors to cytoskeletal dynamics in the growth cone during axon extension remain mysterious. The Rho-family GTPases Rac and CDC-42 are key regulators of growth cone lamellipodia and filopodia formation, yet little is understood about how these molecules interact in growth cone outgrowth or how the activities of these molecules are regulated in distinct contexts. UNC-73/Trio is a well-characterized Rac GTP exchange factor in Caenorhabditis elegans axon pathfinding, yet UNC-73 does not control CED-10/Rac downstream of UNC-6/Netrin in attractive axon guidance. Here we show that C. elegans TIAM-1 is a Rac-specific GEF that links CDC-42 and Rac signaling in lamellipodia and filopodia formation downstream of UNC-40/DCC. We also show that TIAM-1 acts with UNC-40/DCC in axon guidance. Our results indicate that a CDC-42/TIAM-1/Rac GTPase signaling pathway drives lamellipodia and filopodia formation downstream of the UNC-40/DCC guidance receptor, a novel set of interactions between these molecules. Furthermore, we show that TIAM-1 acts with UNC-40/DCC in axon guidance, suggesting that TIAM-1 might regulate growth cone protrusion via Rac GTPases in response to UNC-40/DCC. Our results also suggest that Rac GTPase activity is controlled by different GEFs in distinct axon guidance contexts, explaining how Rac GTPases can specifically control multiple cellular functions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rac de Ligação ao GTP , Animais , Axônios/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Cones de Crescimento/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Pseudópodes/genética , Pseudópodes/fisiologia , Transdução de Sinais , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
8.
Development ; 138(20): 4433-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21880785

RESUMO

The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular/metabolismo , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Movimento Celular , Polaridade Celular , Genes de Helmintos , Mutação , Proteínas do Tecido Nervoso/genética , Netrinas , Neurogênese , Fenótipo , Pseudópodes/metabolismo , Receptores de Superfície Celular/genética , Transdução de Sinais , Imagem com Lapso de Tempo
9.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712249

RESUMO

Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth. In C. elegans, analysis of dorsally-migrating growth cones during outgrowth has shown that growth cone polarity of filopodial extension is separable from the extent of growth cone protrusion. Growth cones are first polarized by UNC-6/Netrin, and subsequent regulation of protrusion by UNC-6/Netrin is based on this earlier-established polarity (the Polarity/Protrusion model). In both cases, short-range or even haptotactic mechanisms are invoked: in vertebrate spinal cord, interactions of growth cones with radial glia expressing Netrin-1; and in C. elegans, a potential close-range interaction that polarizes the growth cone. To explore potential short-range and long-range functions of UNC-6/Netrin, a potentially membrane-anchored transmembrane UNC-6 (UNC-6(TM)) was generated by genome editing. Unc-6(tm) was hypomorphic for dorsal VD/DD axon pathfinding, indicating that it retained some unc-6 function. Polarity of VD growth cone filopodial protrusion was initially established in unc-6(tm), but was lost as the growth cones migrated away from the unc-6(tm) source in the ventral nerve cord. In contrast, ventral guidance of the AVM and PVM axons was equally severe in unc-6(tm) and unc-6(null). Together, these results suggest that unc-6(tm) retains short-range functions but lacks long-range functions. Finally, ectopic unc-6(+) expression from non-ventral sources could rescue dorsal and ventral guidance defects in unc-6(tm) and unc-6(null). Thus, a ventral directional source of UNC-6 was not required for dorsal-ventral axon guidance, and UNC-6 can act as a permissive, not instructive, cue for dorsal-ventral axon guidance. Possibly, UNC-6 is a permissive signal that activates cell-intrinsic polarity; or UNC-6 acts with another signal that is required in a directional manner. In either case, the role of UNC-6 is to polarize the pro-protrusive activity of UNC-40/DCC in the direction of outgrowth.

10.
PLoS One ; 19(5): e0295701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771761

RESUMO

The Polarity/Protusion model of UNC-6/Netrin function in axon repulsion does not rely on a gradient of UNC-6/Netrin. Instead, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge. UNC-5 then inhibits growth cone protrusion ventrally based upon this polarity, resulting in dorsally-biased protrusion and dorsal migration away from UNC-6/Netrin. While previous studies have shown that UNC-5 inhibits growth cone protrusion by destabilizing actin, preventing microtubule + end entry, and preventing vesicle fusion, the signaling pathways involved are unclear. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5, suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Polaridade Celular , Cones de Crescimento , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Movimento Celular , Cones de Crescimento/metabolismo , Receptores de Netrina/metabolismo , Receptores de Netrina/genética , Netrinas , Receptores de Superfície Celular
11.
Genetics ; 227(2)2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38652773

RESUMO

Neurogenesis involves the precisely coordinated action of genetic programs controlling large-scale neuronal fate specification down to terminal events of neuronal differentiation. The Q neuroblasts in Caenorhabditis elegans, QL on the left and QR on the right, divide, differentiate, and migrate in a similar pattern to produce three neurons each. However, QL on the left migrates posteriorly, and QR on the right migrates anteriorly. The MAB-5/Hox transcription factor is necessary and sufficient for posterior Q lineage migration and is normally expressed only in the QL lineage. To define genes controlled by MAB-5 in the Q cells, fluorescence-activated cell sorting was utilized to isolate populations of Q cells at a time in early L1 larvae when MAB-5 first becomes active. Sorted Q cells from wild-type, mab-5 loss-of-function (lof), and mab-5 gain-of-function (gof) mutants were subject to RNA-seq and differential expression analysis. Genes enriched in Q cells included those involved in cell division, DNA replication, and DNA repair, consist with the neuroblast stem cell identity of the Q cells at this stage. Genes affected by mab-5 included those involved in neurogenesis, neural development, and interaction with the extracellular matrix. cwn-1, which encodes a Wnt signaling molecule, showed a paired response to mab-5 in the Q cells: cwn-1 expression was reduced in mab-5(lof) and increased in mab-5(gof), suggesting that MAB-5 is required for cwn-1 expression in Q cells. MAB-5 is required to prevent anterior migration of the Q lineage while it transcriptionally reprograms the Q lineage for posterior migration. Functional genetic analysis revealed that CWN-1 is required downstream of MAB-5 to inhibit anterior migration of the QL lineage, likely in parallel to EGL-20/Wnt in a noncanonical Wnt pathway. In sum, work here describes a Q cell transcriptome, and a set of genes regulated by MAB-5 in the QL lineage. One of these genes, cwn-1, acts downstream of mab-5 in QL migration, indicating that this gene set includes other genes utilized by MAB-5 to facilitate posterior neuroblast migration.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Movimento Celular , Células-Tronco Neurais , Transcriptoma , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/genética , Regulação da Expressão Gênica no Desenvolvimento , Via de Sinalização Wnt , Proteínas de Homeodomínio
12.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38478633

RESUMO

Innate immunity functions as a rapid defense against broad classes of pathogenic agents. While the mechanisms of innate immunity in response to antigen exposure are well-studied, how pathogen exposure activates the innate immune responses and the role of genetic variation in immune activity is currently being investigated. Previously, we showed significant survival differences between the N2 and the CB4856 Caenorhabditis elegans isolates in response to Staphylococcus epidermidis infection. One of those differences was expression of the mab-5 Hox family transcription factor, which was induced in N2, but not CB4856, after infection. In this study, we use survival assays and RNA-sequencing to better understand the role of mab-5 in response to S. epidermidis. We found that mab-5 loss-of-function (LOF) mutants were more susceptible to S. epidermidis infection than N2 or mab-5 gain-of-function (GOF) mutants, but not as susceptible as CB4856 animals. We then conducted transcriptome analysis of infected worms and found considerable differences in gene expression profiles when comparing animals with mab-5 LOF to either N2 or mab-5 GOF. N2 and mab-5 GOF animals showed a significant enrichment in expression of immune genes and C-type lectins, whereas mab-5 LOF mutants did not. Overall, gene expression profiling in mab-5 mutants provided insight into MAB-5 regulation of the transcriptomic response of C. elegans to pathogenic bacteria and helps us to understand mechanisms of innate immune activation and the role that transcriptional regulation plays in organismal health.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Homeodomínio , Imunidade Inata , Staphylococcus epidermidis , Fatores de Transcrição , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/imunologia , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Infecções Estafilocócicas/imunologia , Staphylococcus epidermidis/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
13.
J Neurosci ; 32(12): 4196-211, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22442082

RESUMO

In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.


Assuntos
Caderinas/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Axônios/metabolismo , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios GABAérgicos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Microscopia Imunoeletrônica , Mutação/genética , Interferência de RNA/fisiologia , Sinapses/genética , Vesículas Sinápticas/genética
14.
BMC Genomics ; 14: 304, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23642123

RESUMO

BACKGROUND: Directed cell migration is a fundamental process in normal development and in tumor metastasis. In C. elegans the MAB-5/Hox transcription factor is a determinant of posterior migration of the Q neuroblast descendants. In this work, mab-5 transcriptional targets that control Q descendant migration are identified by comparing RNA-seq profiles in wild type and mab-5 mutant backgrounds. RESULTS: Transcriptome profiling is a widely-used and potent tool to identify genes involved in developmental and pathological processes, and is most informative when RNA can be isolated from individual cell or tissue types. Cell-specific RNA samples can be difficult to obtain from invertebrate model organisms such as Drosophila and C. elegans. Here we test the utility of combining a whole organism RNA-seq approach with mab-5 loss and gain-of-function mutants and functional validation using RNAi to identify genes regulated by MAB-5 to control Q descendant migration. We identified 22 genes whose expression was controlled by mab-5 and that controlled Q descendant migration. Genes regulated by mab-5 were enriched for secreted and transmembrane molecules involved in basement membrane interaction and modification, and some affected Q descendant migration. CONCLUSIONS: Our results indicate that a whole-organism RNA-seq approach, when combined with mutant analysis and functional validation, can be a powerful method to identify genes involved in a specific developmental process, in this case Q descendant posterior migration. These genes could act either autonomously in the Q cells, or non-autonomously in other cells that express MAB-5. The identities of the genes regulated by MAB-5 indicate that MAB-5 acts by modifying interactions with the basement membrane, resulting in posterior versus anterior migration.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Linhagem da Célula , Movimento Celular/genética , Imunoprecipitação da Cromatina , Regulação para Baixo , Proteínas de Homeodomínio/fisiologia , Células-Tronco Neurais , Fatores de Transcrição/fisiologia
15.
PLoS Genet ; 6(11): e1001215, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124943

RESUMO

Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopodia formation and axon pathfinding. While much is known about the regulation of Arp2/3, less is known about regulators of UNC-115/abLIM. Here we show that the Caenorhabditis elegans counterpart of the Receptor for Activated C Kinase (RACK-1) interacts physically with the actin-binding protein UNC-115/abLIM and that RACK-1 is required for axon pathfinding. Genetic interactions indicate that RACK-1 acts cell-autonomously in the UNC-115/abLIM pathway in axon pathfinding and lamellipodia and filopodia formation, downstream of the CED-10/Rac GTPase and in parallel to MIG-2/RhoG. Furthermore, we show that RACK-1 is involved in migration of the gonadal distal tip cells and that the signaling pathways involved in this process might be distinct from those involved in axon pathfinding. In sum, these studies pinpoint RACK-1 as a component of a novel signaling pathway involving Rac GTPases and UNC-115/abLIM and suggest that RACK-1 might be involved in the regulation of the actin cytoskeleton and lamellipodia and filopodia formation in migrating cells and growth cones.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Modelos Biológicos , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação/genética , Especificidade de Órgãos , Ligação Proteica , Pseudópodes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Front Cell Dev Biol ; 11: 1240994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649551

RESUMO

Introduction: UNC-6/Netrin is a conserved bi-functional guidance cue which regulates dorsal-ventral axon guidance in C. elegans. In the Polarity/Protrusion model of UNC-6/Netrin mediated dorsal growth away from UNC-6/Netrin, The UNC-5 receptor first polarizes the VD growth cone such that filopodial protrusions are biased dorsally. Based on this polarity, the UNC-40/DCC receptor stimulates growth cone lamellipodial and filopodial protrusion dorsally. The UNC-5 receptor maintains dorsal polarity of protrusion, and inhibits growth cone protrusion ventrally, resulting in net dorsal growth cone advance. Methods: Growth cone imaging in mutants, combined with Cas9 genome editing and genetic analysis, were used to analyze the role of a novel short isoform on unc-5 in growth cone polarity and protrusion. Results: Work presented here demonstrates a novel role of a previously undescribed, conserved short isoform of UNC-5 (UNC-5B). UNC-5B lacks the cytoplasmic domains of UNC-5 long, including the DEATH domain, the UPA/DB domain, and most of the ZU5 domain. Mutations that specifically affect only the unc-5 long isoforms were hypomorphic, suggesting a role of unc-5B short. A mutation specifically affecting unc-5B caused loss of dorsal polarity of protrusion and reduced growth cone filopodial protrusion, the opposite of unc-5 long mutations. Transgenic expression of unc-5B partially rescued unc-5 axon guidance defects, and resulted in large growth cones. Tyrosine 482 (Y482) in the cytoplasmic juxtamembrane region has been shown to be important for UNC-5 function, and is present in both UNC-5 long and UNC-5B short. Results reported here show that Y482 is required for the function of UNC-5 long and for some functions of UNC-5B short. Finally, genetic interactions with unc-40 and unc-6 suggest that UNC-5B short acts in parallel to UNC-6/Netrin to ensure robust growth cone lamellipodial protrusion. Discussion: These results demonstrate a previously-undescribed role for the UNC-5B short isoform, which is required for dorsal polarity of growth cone filopodial protrusion and to stimulate growth cone protrusion, in contrast to the previously-described role of UNC-5 long in inhibiting growth cone protrusion.

17.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205526

RESUMO

UNC-6/Netrin is a conserved bi-functional guidance cue which regulates dorsal-ventral axon guidance in C. elegans . In the Polarity/Protrusion model of UNC-6/Netrin mediated dorsal growth away from UNC-6/Netrin, The UNC-5 receptor first polarizes the VD growth cone such that filopodial protrusions are biased dorsally. Based on this polarity, the UNC-40/DCC receptor stimulates growth cone lamellipodial and filopodial protrusion dorsally. The UNC-5 receptor maintains dorsal polarity of protrusion, and inhibits growth cone protrusion ventrally, resulting in net dorsal growth cone advance. Work presented here demonstrates a novel role of a previously undescribed, conserved short isoform of UNC-5 (UNC-5B). UNC-5B lacks the cytoplasmic domains of UNC-5 long, including the DEATH domain, the UPA/DB domain, and most of the ZU5 domain. Mutations that specifically affect only the unc-5 long isoforms were hypomorphic, suggesting a role of unc-5B short. A mutation specifically affecting unc-5B cause loss of dorsal polarity of protrusion and reduced growth cone filopodial protrusion, the opposite of unc-5 long mutations. Transgenic expression of unc-5B partially rescued unc-5 axon guidance defects, and resulted in large growth cones. Tyrosine 482 (Y482) in the cytoplasmic juxtamembrane region has been shown to be important for UNC-5 function, and is present in both UNC-5 long and UNC-5B short. Results reported here show that Y482 is required for the function of UNC-5 long and for some functions of UNC-5B short. Finally, genetic interactions with unc-40 and unc-6 suggest that UNC-5B short acts in parallel to UNC-6/Netrin to ensure robust growth cone lamellipodial protrusion. In sum, these results demonstrate a previously-undescribed role for the UNC-5B short isoform, which is required for dorsal polarity of growth cone filopodial protrusion and to stimulate growth cone protrusion, in contrast to the previously-described role of UNC-5 long in inhibiting growth cone protrusion.

18.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292733

RESUMO

In the Polarity/Protusion model of growth cone migration away from the guidance cue UNC-6/Netrin, the UNC-5 receptor polarizes the VD growth cone such that filopodial protrusions are biased to the dorsal leading edge of the growth cone. UNC-5 also inhibits growth cone protrusion ventrally based upon this polarity. The SRC-1 tyrosine kinase has been previously shown to physically interact with and phosphorylate UNC-5, and to act with UNC-5 in axon guidance and cell migration. Here, the role of SRC-1 in VD growth cone polarity and protrusion is investigated. A precise deletion of src-1 was generated, and mutants displayed unpolarized growth cones with increased size, similar to unc-5 mutants. Transgenic expression of src-1(+) in VD/DD neurons resulted in smaller growth cones, and rescued growth cone polarity defects of src-1 mutants, indicating cell-autonomous function. Transgenic expression of a putative kinase-dead src-1(D831A) mutant caused a phenotype similar to src-1 loss-of-function, suggesting that this is a dominant negative mutation. The D381A mutation was introduced into the endogenous src-1 gene by genome editing, which also had a dominant-negative effect. Genetic interactions of src-1 and unc-5 suggest they act in the same pathway on growth cone polarity and protrusion, but might have overlapping, parallel functions in other aspects of axon guidance. src-1 function was not required for the effects of activated myr::unc-5 , suggesting that SRC-1 might be involved in UNC-5 dimerization and activation by UNC-6, of which myr::unc-5 is independent. In sum, these results show that SRC-1 acts with UNC-5 in growth cone polarity and inhibition of protrusion.

19.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986999

RESUMO

Neurogenesis involves the precisely-coordinated action of genetic programs controlling large-scale neuronal fate specification down to terminal events of neuronal differentiation. The Q neuroblasts in C. elegans, QL on the left and QR on the right, divide, differentiate, and migrate in a similar pattern to produce three neurons each. However, QL on the left migrates posteriorly, and QR on the right migrates anteriorly. The MAB-5/Hox transcription factor is necessary and sufficient for posterior Q lineage migration, and is normally expressed only in the QL lineage. To define genes controlled by MAB-5 in the Q cells, fluorescence-activated cell sorting was utilized to isolate populations of Q cells at a time in early L1 larvae when MAB-5 first becomes active. Sorted Q cells from wild-type, mab-5 loss-of-function (lof), and mab-5 gain-of-function (gof) mutants were subject to RNA-seq and differential expression analysis. Genes enriched in Q cells included those involved in cell division, DNA replication, and DNA repair, consist with the neuroblast stem cell identity of the Q cells at this stage. Genes affected by mab-5 included those involved in neurogenesis, neural development, and interaction with the extracellular matrix. cwn-1, which encodes a Wnt signaling molecule, showed a paired response to mab-5 in the Q cells: cwn-1 expression was reduced in mab-5(lof) and increased in mab-5(gof), suggesting that MAB-5 is required for cwn-1 expression in Q cells. MAB-5 is required to prevent anterior migration of the Q lineage while it transcriptionally reprograms the Q lineage for posterior migration. Functional genetic analysis revealed that CWN-1 is required downstream of MAB-5 to inhibit anterior migration of the QL lineage, likely in parallel to EGL-20/Wnt in a non-canonical Wnt pathway. In sum, work here describes a Q cell transcriptome, and a set of genes regulated by MAB-5 in the QL lineage. One of these genes, cwn-1, acts downstream of mab-5 in QL migration, indicating that this gene set includes other genes utilized by MAB-5 to facilitate posterior neuroblast migration.

20.
J Pers Med ; 13(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37108980

RESUMO

Each individual has a unique and interacting set of genetic, lifestyle, and environmental factors that are reflected in their physical exam and laboratory biomarkers and significantly impact their experience of health. Patterns of nutrient deficiency signs and biomarker levels below health-promoting thresholds have been identified in national nutrition surveys. However, identifying these patterns remains a challenge in clinical medicine for many reasons, including clinician training and education, clinical time restraints, and the belief that these signs are both rare and recognizable only in cases of severe nutritional deficiencies. With an increased interest in prevention and limited resources for comprehensive diagnostic evaluations, a functional nutrition evaluation may augment patient-centered screening evaluations and personalized wellness programs. During LIFEHOUSE, we have documented physical exam, anthropometric, and biomarker findings that may increase the recognition of these wellness-challenging patterns in a population of 369 adult employees working in two occupational areas: administrative/sales and manufacturing/warehouse. Distinct and significant physical exam differences and constellations of biomarker abnormalities were identified. We present these patterns of physical exam findings, anthropometrics, and advanced biomarkers to assist clinicians in diagnostic and therapeutic interventions that may stem the loss of function that precedes the development of the non-communicable chronic diseases of aging.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa