Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047358

RESUMO

Salvinal is a natural lignan isolated from the roots of Salvia mitorrhiza Bunge (Danshen). Previous studies have demonstrated its anti-proliferative activity in both drug-sensitive and -resistant cancer cell lines, with IC50 values ranging from 4-17 µM. In this study, a series of salvinal derivatives was synthesized and evaluated for the structure-activity relationship. Among the twenty-four salvinal derivatives, six compounds showed better anticancer activity than salvinal. Compound 25 displayed excellent anticancer activity, with IC50 values of 0.13-0.14 µM against KB, KB-Vin10 (overexpress MDR/Pgp), and KB-7D (overexpress MRP) human carcinoma cell lines. Based on our in vitro microtubule depolymerization assay, compound 25 showed depolymerization activity in a dose-dependent manner. Our findings indicate that compound 25 is a promising anticancer agent with depolymerization activity that has potential for the management of malignance.


Assuntos
Antineoplásicos , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Moduladores de Tubulina/farmacologia , Microtúbulos , Proliferação de Células , Relação Dose-Resposta a Droga , Estrutura Molecular , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular
2.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293388

RESUMO

For rapid and unlimited cell growth and proliferation, cancer cells require large quantities of nutrients. Many metabolic pathways and nutrient uptake systems are frequently reprogrammed and upregulated to meet the demand from cancer cells, including the demand for lipids. The lipids for most adult normal cells are mainly acquired from the circulatory system. Whether different cancer cells adopt identical mechanisms to ensure sufficient lipid supply, and whether the lipid demand and supply meet each other, remains unclear, and was investigated in lung cancer cells. Results showed that, despite frequent upregulation in de novo lipogenesis and the lipid transporter system, different lung cancer cells adopt different proteins to acquire sufficient lipids, and the lipid supply frequently exceeds the demand, as significant amounts of lipids stored in the lipid droplets could be found within lung cancer cells. Lipid droplet surface protein, PLIN3, was found frequently overexpressed since the early stage in lung cancer tissues. Although the expression is not significantly associated with a specific gender, age, histology type, disease stage, and smoking habit, the frequently elevated expression of PLIN3 protein indicates the importance of lipid droplets for lung cancer. These lipid droplets are not only for nutrient storage, but are also crucial for tumor growth and proliferation, as well as survival in starvation. These results suggest that manipulation of lipid droplet formation or TG storage in lung cancer cells could potentially decrease the progression of lung cancer. Further exploration of lipid biology in lung cancer could help design novel treatment strategies.


Assuntos
Neoplasias Pulmonares , Inanição , Adulto , Humanos , Gotículas Lipídicas/metabolismo , Perilipina-3/metabolismo , Metabolismo dos Lipídeos , Proliferação de Células , Proteínas de Membrana/metabolismo , Inanição/metabolismo , Neoplasias Pulmonares/metabolismo , Lipídeos/fisiologia
3.
J Med Virol ; 92(6): 693-697, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32167173

RESUMO

An outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan and it has rapidly spread to almost all parts of the world. For coronaviruses, RNA-dependent RNA polymerase (RdRp) is an important polymerase that catalyzes the replication of RNA from RNA template and is an attractive therapeutic target. In this study, we screened these chemical structures from traditional Chinese medicinal compounds proven to show antiviral activity in severe acute respiratory syndrome coronavirus (SARS-CoV) and the similar chemical structures through a molecular docking study to target RdRp of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV). We found that theaflavin has a lower idock score in the catalytic pocket of RdRp in SARS-CoV-2 (-9.11 kcal/mol), SARS-CoV (-8.03 kcal/mol), and MERS-CoV (-8.26 kcal/mol) from idock. To confirm the result, we discovered that theaflavin has lower binding energy of -8.8 kcal/mol when it docks in the catalytic pocket of SARS-CoV-2 RdRp by using the Blind Docking server. Regarding contact modes, hydrophobic interactions contribute significantly in binding and additional hydrogen bonds were found between theaflavin and RdRp. Moreover, one π-cation interaction was formed between theaflavin and Arg553 from the Blind Docking server. Our results suggest that theaflavin could be a potential SARS-CoV-2 RdRp inhibitor for further study.


Assuntos
Antivirais/química , Betacoronavirus/efeitos dos fármacos , Biflavonoides/química , Catequina/química , Medicamentos de Ervas Chinesas/química , RNA Polimerase Dependente de RNA/química , Proteínas Virais/química , Sequência de Aminoácidos , Antivirais/farmacologia , Betacoronavirus/enzimologia , Betacoronavirus/genética , Biflavonoides/farmacologia , Domínio Catalítico , Catequina/farmacologia , Biologia Computacional/métodos , Medicamentos de Ervas Chinesas/farmacologia , Expressão Gênica , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202823

RESUMO

Genetic mutations accumulated overtime could generate many growth and survival advantages for cancer cells, but these mutations also mark cancer cells as targets to be eliminated by the immune system. To evade immune surveillance, cancer cells adopted different intrinsic molecules to suppress immune response. PD-L1 is frequently overexpressed in many cancer cells, and its engagement with PD-1 on T cells diminishes the extent of cytotoxicity from the immune system. To resume immunity for fighting cancer, several therapeutic antibodies disrupting the PD-1/PD-L1 interaction have been introduced in clinical practice. However, their immunogenicity, low tissue penetrance, and high production costs rendered these antibodies beneficial to only a limited number of patients. PD-L1 dimer formation shields the interaction interface for PD-1 binding; hence, screening for small molecule compounds stabilizing the PD-L1 dimer may make immune therapy more effective and widely affordable. In the current study, 111 candidates were selected from over 180,000 natural compound structures through virtual screening, contact fingerprint analysis, and pharmacological property prediction. Twenty-two representative candidates were further evaluated in vitro. Two compounds were found capable of inhibiting the PD-1/PD-L1 interaction and promoting PD-L1 dimer formation. Further structure optimization and clinical development of these lead inhibitors will eventually lead to more effective and affordable immunotherapeutic drugs for cancer patients.


Assuntos
Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/química , Anticorpos/uso terapêutico , Antineoplásicos Imunológicos/química , Antígeno B7-H1/química , Análise por Conglomerados , Reagentes de Ligações Cruzadas/química , Bases de Dados Factuais , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligação de Hidrogênio , Imunoterapia , Simulação de Acoplamento Molecular , Mutação , Polímeros/uso terapêutico , Ligação Proteica , Multimerização Proteica , Bibliotecas de Moléculas Pequenas/química
5.
Haematologica ; 102(3): 509-518, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28057739

RESUMO

High mobility group AT-hook 2 (HMGA2) is an architectural transcription factor that is negatively regulated by let-7 microRNA through binding to it's 3'-untranslated region. Transgenic mice expressing Hmga2 with a truncation of its 3'-untranslated region has been shown to exhibit a myeloproliferative phenotype. To decipher the let-7-HMGA2 axis in myeloproliferative neoplasms, we employed an in vitro model supplemented with clinical correlation. Ba/F3 cells with inducible JAK2V617F expression (Ton.JAK2.V617F cells) showed upregulation of HMGA2 with concurrent let-7a repression. Ton.JAK2.V617F cells treated with a let-7a inhibitor exhibited further escalation of Hmga2 expression, while a let-7a mimic diminished the Hmga2 transcript level. Hmga2 overexpression conferred JAK2-mutated cells with a survival advantage through inhibited apoptosis. A pan-JAK inhibitor, INC424, increased the expression of let-7a, downregulated the level of Hmga2, and led to increased apoptosis in Ton.JAK2.V617F cells in a dose-dependent manner. In samples from 151 patients with myeloproliferative neoplasms, there was a modest inverse correlation between the expression levels of let-7a and HMGA2 Overexpression of HMGA2 was detected in 29 (19.2%) of the cases, and it was more commonly seen in patients with essential thrombocythemia than in those with polycythemia vera (26.9% vs 12.7%, P=0.044). Patients with upregulated HMGA2 showed an increased propensity for developing major thrombotic events, and they were more likely to harbor one of the 3 driver myeloproliferative neoplasm mutations in JAK2, MPL and CALR Our findings suggest that, in a subset of myeloproliferative neoplasm patients, the let-7-HMGA2 axis plays a prominent role in the pathogenesis of the disease that leads to unique clinical phenotypes.


Assuntos
Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Janus Quinase 2/genética , MicroRNAs/genética , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Fenótipo , Transdução de Sinais , Adulto , Idoso , Apoptose/genética , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Cromossomos Humanos Par 12 , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Estudos de Associação Genética , Humanos , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Janus Quinase 2/metabolismo , Masculino , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/mortalidade , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Interferência de RNA , Fatores de Transcrição STAT/metabolismo , Translocação Genética
6.
J Cell Mol Med ; 20(7): 1295-306, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969027

RESUMO

Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-ß inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future.


Assuntos
Antineoplásicos/farmacologia , Proteínas Culina/metabolismo , Técnicas de Silenciamento de Genes , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
J Med Virol ; 92(10): 2248, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33411369
8.
Ann Hematol ; 93(12): 2029-36, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25015052

RESUMO

Calreticulin (CALR) mutations were recently identified in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF) devoid of JAK2 and MPL mutations. We evaluated the clinical, laboratory, and molecular features of a Taiwanese population of patients with ET. Among 147 ET patients, CALR mutations were detected in 33 (22.5 %), JAK2V617F in 94 (63.9 %), and MPL mutations in 4 (2.7 %). Sixteen (10.9 %) patients were negative for all three mutations (CALR, JAK2V617F, and MPL; triple negative). Interestingly, one patient with the type 2 CALR mutation also harbored a low allele burden (0.025 %) of JAK2V617F mutation. Furthermore, we found a novel CALR mutation, with the resultant protein sharing an identical amino acid sequence to the type 6 CALR mutant. Compared to those with JAK2 mutation, CALR-mutated ET patients were characterized by younger age, lower leukocyte count, higher platelet count, and decreased risk of thrombosis. CALR mutations had a favorable impact on thrombosis-free survival (TFS) for ET patients, whereas the respective TFS outcomes were similarly poorer in JAK2-mutated ET and PV patients. Multivariate analysis confirmed that younger age (<60 years), presence of CALR mutations, and a lower platelet count (<1,000 × 10(9)/L) were independently associated with a longer TFS in ET patients. The current study demonstrates that CALR mutations characterize a special group of ET patients with unique phenotypes that are not discrepant from those seen in Western countries.


Assuntos
Calreticulina/genética , Mutação , Trombocitemia Essencial/genética , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Feminino , Humanos , Janus Quinase 2/genética , Estimativa de Kaplan-Meier , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Contagem de Plaquetas , Modelos de Riscos Proporcionais , Receptores de Trombopoetina/genética , Alinhamento de Sequência , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Esplenomegalia/etiologia , Taiwan/epidemiologia , Trombocitemia Essencial/complicações , Trombocitemia Essencial/etnologia , Trombocitemia Essencial/mortalidade , Trombofilia/etiologia , Adulto Jovem
9.
Jpn J Clin Oncol ; 44(12): 1164-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25320341

RESUMO

OBJECTIVE: Epstein-Barr virus-positive diffuse large B-cell lymphoma is a provisional entity in the 2008 World Health Organization classification of tumors of hematopoietic and lymphoid tissues. Reports on the characteristics and clinical outcome of this disease in different geographic regions showed great disparities. METHODS: To define the clinical characteristics as well as the prognostic impact of Epstein-Barr virus infection on diffuse large B-cell lymphoma in Taiwan, we retrospectively investigated the Epstein-Barr virus status of 89 patients with newly diagnosed diffuse large B-cell lymphoma in our institute. RESULTS: Using a cutoff point of positive nuclear staining of Epstein-Barr virus-encoded RNA-1-in situ hybridization in ≥20% of the examined cells, we identified 15 cases (16.9%) of the entire study cohort as Epstein-Barr virus-positive diffuse large B-cell lymphoma. The clinical and laboratory features were not different between Epstein-Barr virus-positive and -negative diffuse large B-cell lymphoma patients. Univariate analysis showed patients with diffuse large B-cell lymphoma that were either Epstein-Barr virus-positive or had activated B-cell-like features had an inferior overall survival. Older age, advanced stage and lymphoma with activated B-cell-like features or Epstein-Barr virus-encoded RNA positivity were independent prognostic factors affecting overall survival on multivariate analysis. Patients with two or three of these adverse-risk factors were considered high risk and fared far worse than patients with no or only one adverse factor. CONCLUSIONS: Taken together, we demonstrated that a higher frequency of Epstein-Barr virus association was detected in a Taiwanese cohort of diffuse large B-cell lymphoma patients, and Epstein-Barr virus-encoded RNA positivity was shown to add important prognostic value in these patients.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Linfoma Difuso de Grandes Células B/terapia , Adolescente , Adulto , Idoso , Feminino , Humanos , Linfoma Difuso de Grandes Células B/virologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taiwan , Resultado do Tratamento
10.
Biol Methods Protoc ; 9(1): bpae037, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863526

RESUMO

Molecular techniques that recover unknown sequences next to a known sequence region have been widely applied in various molecular studies, such as chromosome walking, identification of the insertion site of transposon mutagenesis, fusion gene partner, and chromosomal breakpoints, as well as targeted sequencing library preparation. Although various techniques have been introduced for efficiency enhancement, searching for relevant single molecular event present in a large-sized genome remains challenging. Here, the optimized ligation-mediated polymerase chain reaction (PCR) method was developed and successfully identified chromosomal breakpoints far away from the exon of the new exon junction without the need for nested PCR. In addition to recovering unknown sequences next to a known sequence region, the high efficiency of the method could also improve the performance of targeted  next-generation sequencing (NGS).

12.
Am J Cancer Res ; 12(5): 2376-2386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693072

RESUMO

ROS1 fusion genes are rare but important driver genes in lung cancer. Owing to their rarity, many clinicopathological features and treatment responses for each ROS1 fusion variant are still largely unknown and require further investigation. RNA is the preferable template for the ROS1 fusion gene screening, but deterioration of RNA in FFPE often makes the detection challenging. To resolve the difficulty, a targeted chromosomal breakpoint sequencing method was developed for searching the ROS1 fusion gene, and was compared with fluorescence in situ hybridization, immunohistochemistry, RT-qPCR using 260 lung cancer samples of Southern Taiwan. The results showed that ROS1-altered cases were present at low frequencies, did not share distinct clinicopathological features, and often carried other driver mutations. The performance of the targeted sequencing assay was superior to the RT-qPCR in ROS1 fusion gene identification when the cDNAs were from FFPE samples, but long-read DNA sequencing and fresh-frozen samples would be better to revolve all fusion genes. Precise determination of all ROS1 fusion variants and concomitant driver mutations using both genomic DNA and RNA would be required to help improve the treatment of patients with ROS1 alterations.

13.
Cancers (Basel) ; 14(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35326662

RESUMO

This study aims to investigate the role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in early prediction of response and survival following epithelial growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) therapy in patients with advanced lung adenocarcinomas and EGFR mutations. Thirty patients with stage IIIB/IV lung adenocarcinomas and EGFR mutations receiving first-line EGFR-TKIs were prospectively evaluated between November 2012 and May 2015. EGFR mutations were quantified by delta cycle threshold (dCt). 18F-FDG PET/CT was performed before and 2 weeks after treatment initiation. PET response was assessed based on PET Response Criteria in Solid Tumors (PERCIST). Baseline and percentage changes in the summed standardized uptake value, metabolic tumor volume (bsumMTV and ΔsumMTV, respectively), and total lesion glycolysis of ≤5 target lesions/patient were calculated. The association between parameters (clinical and PET) and non-progression disease after 3 months of treatment in CT based on the Response Evaluation Criteria in Solid Tumors Version 1.1 (nPD3mo), progression-free survival (PFS), and overall survival (OS) were tested. The median follow-up time was 19.6 months. The median PFS and OS were 12.0 and 25.3 months, respectively. The PERCIST criteria was an independent predictor of nPD3mo (p = 0.009), dCt (p = 0.014) and bsumMTV (p = 0.014) were independent predictors of PFS, and dCt (p = 0.014) and ΔsumMTV (p = 0.005) were independent predictors of OS. 18F-FDG PET/CT achieved early prediction of outcomes in patients with advanced lung adenocarcinomas and EGFR mutations receiving EGFR-TKIs.

14.
Cancers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439260

RESUMO

Annexin A1 (ANXA1) has been reported to promote tumor growth and resistance to chemotherapy drugs in lung cancer cells. In this study, we focused on the association of ANXA1 and chemosensitivity with a third generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), Osimertinib, in lung cancer cells with EGFR mutations. The overexpression of ANXA1 was observed in the lung cancer cells studied. The downregulation of ANXA1 with small interference RNA (siRNA) decreased the growth of lung cancer cells. In lung cancer cells with EGFR mutations, the knockdown of ANXA1 increased the chemosensitivity to Osimertinib, and decreased the tumorigenesis, invasion and migration of lung cancer cells. Further study showed that the knockdown of ANXA1 inhibited the phosphorylation of EGFR and down-stream Akt pathways and promoted apoptosis in lung cancer cells treated with Osimertinib. A mice xenograft lung cancer model was established in our study and showed that ANXA1 siRNA enhanced the effects of Osimertinib in vivo. Our study results showed that ANXA1 plays critical roles in chemosensitivity to EGFR-TKI in lung cancer cells with the EGFR mutation. Our efforts may be used in the development of lung cancer treatment strategies in the future.

15.
Am J Transl Res ; 13(10): 11194-11208, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786051

RESUMO

Cullin 4A (Cul4A) reportedly has oncogenic roles in several cancer types by regulating tumor suppressors through the ubiquitination and proteolysis of the tumor suppressor. In addition, Cul4A is associated with chemosensitivity to chemotherapy drugs. This study investigated the association between Cul4A and lung cancer cell chemosensitivity to paclitaxel, particularly with respect to the role of the p33 inhibitor of the growth 1 (p33ING1b) tumor suppressor. The results showed that the Cul4A knockdown upregulated the p33ING1b expression in lung cancer cells and increased the lung cancer cell and mice tumor xenograft chemosensitivity to paclitaxel. The Cul4A knockdown also inhibited the growth and increased the apoptosis in the tumor xenografts treated with paclitaxel. Notably, the p33ING1b overexpression increased the lung cancer cell chemosensitivity to paclitaxel, but the p33ING1b knockdown reduced the chemosensitivity. A further analysis demonstrated that Cul4A regulates the expression of p33ING1b through protein-protein interactions, ubiquitination, and protein degradation. In conclusion, the present findings suggest that Cul4A mediates the chemosensitivity of lung cancer cells to paclitaxel by regulating p33ING1b. These findings may offer novel insights into future therapeutic strategies for lung cancer that target Cul4A.

16.
Sci Rep ; 10(1): 16943, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037234

RESUMO

Mutations that lead to constitutive activation of key regulators in cellular processes are one of the most important drivers behind vigorous growth of cancer cells, and are thus prime targets in cancer treatment. BRAF V600E mutation transduces strong growth and survival signals for cancer cells, and is widely present in various types of cancers including lung cancer. A combination of BRAF inhibitor (dabrafenib) and MEK inhibitor (trametinib) has recently been approved and significantly improved the survival of patients with advanced NSCLC harboring BRAF V600E/K mutation. To improve the detection of BRAF V600E/K mutation and investigate the incidence and clinicopathological features of the mutation in lung cancer patients of southern Taiwan, a highly sensitive and specific real-time quantitative PCR (RT-qPCR) method, able to detect single-digit copies of mutant DNA, was established and compared with BRAF V600E-specific immunohistochemistry. Results showed that the BRAF V600E mutation was present at low frequency (0.65%, 2/306) in the studied patient group, and the detection sensitivity and specificity of the new RT-qPCR and V600E-specific immunohistochemistry both reached 100% and 97.6%, respectively. Screening the BRAF V600E/K mutation with the RT-qPCR and V600E-specific immunohistochemistry simultaneously could help improve detection accuracy.


Assuntos
Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Imidazóis/uso terapêutico , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Oximas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/uso terapêutico , Pirimidinonas/uso terapêutico , Sensibilidade e Especificidade , Taiwan
18.
Cancers (Basel) ; 11(5)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052599

RESUMO

: Cullin 4A (Cul4A) is overexpressed in a number of cancers and has been established as an oncogene. This study aimed to elucidate the role of Cul4A in lung cancer invasion and metastasis. We observed that Cul4A was overexpressed in non-small cell lung cancer (NSCLC) tissues and the overexpression of Cul4A was associated with poor prognosis after surgical resection and it also decreased the expression of the tumor suppressor protein annexin A10 (ANXA10). The knockdown of Cul4A was associated with the upregulation of ANXA10, and the forced expression of Cul4A was associated with the downregulation of ANXA10 in lung cancer cells. Further studies showed that the knockdown of Cul4A inhibited the invasion and metastasis of lung cancer cells, which was reversed by the further knockdown of ANXA10. In addition, the knockdown of Cul4A inhibited lung tumor metastasis in mouse tail vein injection xenograft models. Notably, Cul4A regulated the degradation of ANXA10 through its interaction with ANXA10 and ubiquitination in lung cancer cells. Our findings suggest that Cul4A is a prognostic marker in NSCLC patients, and Cul4A plays important roles in lung cancer invasion and metastasis through the regulation of the ANXA10 tumor suppressor.

19.
Cancers (Basel) ; 11(6)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185703

RESUMO

Mutations in the epidermal growth factor receptor (EGFR) are associated with various solid tumors. This study aimed to compare two methods for the detection of EGFR mutations in circulating tumor DNA (ctDNA) from lung adenocarcinoma (LUAD) patients and to evaluate the clinical significance of EGFR mutations in ctDNA. In this prospective cohort study, the EGFR mutation status of 77 patients with stage IIIB or IV LUAD was first determined using lung cancer tissue. The amplification refractory mutation system (ARMS) and single allele base extension reaction combined with mass spectroscopy (SABER/MassARRAY) methods were also used to detect EGFR mutations in plasma ctDNA from these patients and then compared using the EGFR mutation status in lung cancer tissue as a standard. Furthermore, the relationship between the presence of EGFR mutations in ctDNA after receiving first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI) therapy and survival was evaluated. The overall sensitivity and specificity for the detection of EGFR mutations in plasma ctDNA by ARMS and SABER/MassARRAY were 49.1% vs. 56% and 90% vs. 95%, respectively. The agreement level between these methods was very high, with a kappa-value of 0.88 (95% CI 0.77-0.99). Moreover, 43 of the patients who carried EGFR mutations also received first-line EGFR-TKI therapy. Notably, patients with EGFR mutations in plasma ctDNA had significantly shorter progression-free survival (9.0 months, 95% CI 7.0-11.8, vs. 15.0 months, 95% CI 11.7-28.2; p = 0.02) and overall survival (30.6 months, 95% CI 12.4-37.2, vs. 55.6 months, 95% CI 25.8-61.8; p = 0.03) compared to those without detectable EGFR mutations. The detection of EGFR mutations in plasma ctDNA is a promising, minimally invasive, and reliable alternative to tumor biopsy, and the presence of EGFR mutations in plasma ctDNA after first-line EGFR-TKI therapy is associated with poor prognosis.

20.
PLoS One ; 14(8): e0220670, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31369639

RESUMO

Somatic mutations of MET gene are emerging as important driver mutations for lung cancers. To identify the common clinicopathological features of MET exon 14 skipping mutations and amplification and clarify whether the two MET gene alterations cause protein overexpression were investigated using 196 lung cancer samples of Taiwan through real time-qPCR/sequencing, fluorescence in situ hybridization, and immunohistochemistry. The two MET gene alterations are both present in low frequency, ~1%, in the studied lung cancer population of Taiwan. MET exon 14 skipping mutations were identified from two early-stage patients, who were both relatively advanced in age, and did not carry other driver mutations. One was an adenocarcinoma and the other was a rare carcinosarcoma. Three gene amplifications cases were identified. Neither of the two MET gene alterations would lead to protein overexpression; hence, direct detection in nucleic acid level would be a preferred and straightforward solution for the identification of skipping mutations. The presence of MET exon 14 mutations in minor histological types of lung cancers urge to extend screening scope of this mutation in lung cancer and treatment response evaluation in clinical trials. These would be important next steps for the success of MET target therapy in clinical practice.


Assuntos
Éxons/genética , Amplificação de Genes/genética , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas c-met/genética , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinossarcoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Taiwan
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa