Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103576

RESUMO

Nucleophosmin 1 (NPM1) is commonly mutated in myelodysplastic syndrome (MDS) and acute myeloid leukemia. Concurrent inflammatory bowel diseases (IBD) and MDS are common, indicating a close relationship between IBD and MDS. Here we examined the function of NPM1 in IBD and colitis-associated colorectal cancer (CAC). NPM1 expression was reduced in patients with IBD. Npm1+/- mice were more susceptible to acute colitis and experimentally induced CAC than littermate controls. Npm1 deficiency impaired the function of interleukin-22 (IL-22)-producing group three innate lymphoid cells (ILC3s). Mice lacking Npm1 in ILC3s exhibited decreased IL-22 production and accelerated development of colitis. NPM1 was important for mitochondrial biogenesis and metabolism by oxidative phosphorylation in ILC3s. Further experiments revealed that NPM1 cooperates with p65 to promote mitochondrial transcription factor A (TFAM) transcription in ILC3s. Overexpression of Npm1 in mice enhanced ILC3 function and reduced the severity of dextran sulfate sodium-induced colitis. Thus, our findings indicate that NPM1 in ILC3s protects against IBD by regulating mitochondrial metabolism through a p65-TFAM axis.

2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091468

RESUMO

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , Apoptose/genética , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , China , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Neoplasias/genética
3.
Brain Sci ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37239183

RESUMO

The mammalian brain, with its complexity and intricacy, poses significant challenges for researchers aiming to understand its inner workings. Optical multilayer interference tomography (OMLIT) is a novel, promising imaging technique that enables the mapping and reconstruction of mesoscale all-cell brain atlases and is seamlessly compatible with tape-based serial scanning electron microscopy (SEM) for microscale mapping in the same tissue. However, currently, OMLIT suffers from imperfect coatings, leading to background noise and image contamination. In this study, we introduced a new imaging configuration using carbon spraying to eliminate the tape-coating step, resulting in reduced noise and enhanced imaging quality. We demonstrated the improved imaging quality and validated its applicability through a correlative light-electron imaging workflow. Our method successfully reconstructed all cells and vasculature within a large OMLIT dataset, enabling basic morphological classification and analysis. We also show that this approach can perform effectively on thicker sections, extending its applicability to sub-micron scale slices, saving sample preparation and imaging time, and increasing imaging throughput. Consequently, this method emerges as a promising candidate for high-speed, high-throughput brain tissue reconstruction and analysis. Our findings open new avenues for exploring the structure and function of the brain using OMLIT images.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa