Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 26(1): 42, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602061

RESUMO

BACKGROUND: Keratinocytes and fibroblasts represent the major cell types in the epidermis and dermis of the skin and play a significant role in maintenance of skin homeostasis. However, the biological characteristics of keratinocytes and fibroblasts remain to be elucidated. The purpose of this study was to compare the gene expression pattern between keratinocytes and fibroblasts and to explore novel biomarker genes so as to provide potential therapeutic targets for skin-related diseases such as burns, wounds, and aging. METHODS: Skin keratinocytes and fibroblasts were isolated from newborn mice. To fully understand the heterogeneity of gene expression between keratinocytes and fibroblasts, differentially expressed genes (DEGs) between the two cell types were detected by RNA-seq technology. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the known genes of keratinocytes and fibroblasts and verify the RNA-seq results. RESULTS: Transcriptomic data showed a total of 4309 DEGs (fold-change > 1.5 and q-value < 0.05). Among them, 2197 genes were highly expressed in fibroblasts and included 10 genes encoding collagen, 16 genes encoding transcription factors, and 14 genes encoding growth factors. Simultaneously, 2112 genes were highly expressed in keratinocytes and included 7 genes encoding collagen, 14 genes encoding transcription factors, and 8 genes encoding growth factors. Furthermore, we summarized 279 genes specifically expressed in keratinocytes and 33 genes specifically expressed in fibroblasts, which may represent distinct molecular signatures of each cell type. Additionally, we observed some novel specific biomarkers for fibroblasts such as Plac8 (placenta-specific 8), Agtr2 (angiotensin II receptor, type 2), Serping1 (serpin peptidase inhibitor, clade G, member 1), Ly6c1 (lymphocyte antigen 6 complex, locus C1), Dpt (dermatopontin), and some novel specific biomarkers for keratinocytes such as Ly6a (lymphocyte antigen 6 complex, locus A) and Lce3c (late cornified envelope 3C), Ccer2 (coiled-coil glutamate-rich protein 2), Col18a1 (collagen, type XVIII, alpha 1) and Col17a1 (collagen type XVII, alpha 1). In summary, these data provided novel identifying biomarkers for two cell types, which can provide a resource of DEGs for further investigations.


Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Dermatopatias/metabolismo , Pele/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Masculino , Camundongos , Colágenos não Fibrilares/metabolismo , Análise de Sequência de RNA/métodos , Colágeno Tipo XVII
2.
J Orthop Surg Res ; 17(1): 419, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104709

RESUMO

BACKGROUND: It is recorded in the Chinese Pharmacopoeia that deer antlers can be used to tonify the kidney and strengthen bone. Although numerous studies have demonstrated that deer antler has protective effects on the kidney and bone, its molecular mechanisms remain to be elucidated. The aim of this study was to explore the molecular mechanism underlying its effects on the bone and kidney. METHODS: Water extract of pilose antler was prepared and then filtered through a 0.45 µm Hollow Fiber Cartridge (GE Healthcare, USA). The filtrate was freeze-dried by a Heto PowerDry LL3000 Freeze Dryer (Thermo, USA) and stored at - 80 °C. Rats were treated with deer antler extract (DAE) prepared in advance, and gene regulatory network in the kidney and bone was detected by RNA-Seq technique. Micro-CT was used to detect bone trabecular formation, bone mineral density (BMD) and bone volume fraction (BV/TV). RESULTS: The results demonstrate that DAE could jointly heighten renal function by maintaining renal homeostasis, combating renal fibrosis, and reducing renal inflammation by regulating ion transport. Furthermore, DAE can strengthen the bone system by stimulating osteoblast differentiation and regulating bone regeneration and the bone marrow microenvironment. Micro-CT results confirmed that DAE can promote bone trabecular formation and increase BMD and BV/TV. We also identified many genes that can regulate both the kidney and bone simultaneously, which explained the theory of "kidney governing bone" at the molecular level and provided possible strategies for further application of this theory to treat diseases. CONCLUSIONS: DAE enhances renal function, maintains renal homeostasis, positively regulates skeletal system development, and increases bone mineral density. The underlying mechanism involves improving the expression levels of functional genes involved in renal function and regulation and repair, as well as genes that positively regulate skeletal system development.


Assuntos
Chifres de Veado , Cervos , Animais , Densidade Óssea , Osso e Ossos , Rim/fisiologia , Ratos
3.
Artigo em Inglês | MEDLINE | ID: mdl-34671409

RESUMO

Deer velvet antlers are the young horns of male deer that are not ossified and densely overgrown. Velvet antler and its preparations have been widely used in the treatment of postmenopausal osteoporosis (PMOP) in recent years, although its mechanism of action in the human body remains unclear. To screen the effective ingredients and targets of velvet antler in the treatment of PMOP using network pharmacology and to explore the potential mechanisms of velvet antler action in such treatments, we screened the active ingredients and targets of velvet antler in the BATMAN-TCM database. We also screened the relevant targets of PMOP in the GeneCards and OMIM databases and then compared the targets at the intersection of both velvet antler and PMOP. We used Cytoscape 3.7.2 software to construct a network diagram of "disease-drug-components-targets" and a protein-protein interaction (PPI) network through the STRING database and screened out the core targets; the R language was then used to analyze the shared targets between antler and PMOP for GO-enrichment analysis and KEGG pathway-annotation analysis. Furthermore, we used the professional software Maestro 11.1 to verify the predictive analysis based on network pharmacology. Hematoxylin-eosin (H&E) staining and micro-CT were used to observe the changes in trabecular bone tissue, further confirming the results of network pharmacological analysis. The potentially effective components of velvet antler principally include 17ß-E2, adenosine triphosphate, and oestrone. These components act on key target genes such as AKT1, IL6, MAPK3, TP53, EGFR, SRC, and TNF and regulate the PI3K/Akt-signaling and MAPK-signaling pathways. These molecules participate in a series of processes such as cellular differentiation, apoptosis, metabolism, and inflammation and can ultimately be used to treat PMOP; they reflect the overall regulation, network regulation, and protein interactions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa