Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant Physiol ; 194(4): 2165-2182, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37995374

RESUMO

N6-methyladenosine (m6A) in mRNA and 5-methylcytosine (5mC) in DNA have critical functions for regulating gene expression and modulating plant growth and development. However, the interplay between m6A and 5mC is an elusive territory and remains unclear mechanistically in plants. We reported an occurrence of crosstalk between m6A and 5mC in maize (Zea mays) via the interaction between mRNA adenosine methylase (ZmMTA), the core component of the m6A methyltransferase complex, and decrease in DNA methylation 1 (ZmDDM1), a key chromatin-remodeling factor that regulates DNA methylation. Genes with m6A modification were coordinated with a much higher level of DNA methylation than genes without m6A modification. Dysfunction of ZmMTA caused severe arrest during maize embryogenesis and endosperm development, leading to a significant decrease in CHH methylation in the 5' region of m6A-modified genes. Instead, loss of function of ZmDDM1 had no noteworthy effects on ZmMTA-related activity. This study establishes a direct link between m6A and 5mC during maize kernel development and provides insights into the interplay between RNA modification and DNA methylation.


Assuntos
Metilação de DNA , Zea mays , Metilação de DNA/genética , Zea mays/genética , Zea mays/metabolismo , Metilação de RNA , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(27): e2201275119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759672

RESUMO

Fine audiovocal control is a hallmark of human speech production and depends on precisely coordinated muscle activity guided by sensory feedback. Little is known about shared audiovocal mechanisms between humans and other mammals. We hypothesized that real-time audiovocal control in bat echolocation uses the same computational principles as human speech. To test the prediction of this hypothesis, we applied state feedback control (SFC) theory to the analysis of call frequency adjustments in the echolocating bat, Hipposideros armiger. This model organism exhibits well-developed audiovocal control to sense its surroundings via echolocation. Our experimental paradigm was analogous to one implemented in human subjects. We measured the bats' vocal responses to spectrally altered echolocation calls. Individual bats exhibited highly distinct patterns of vocal compensation to these altered calls. Our findings mirror typical observations of speech control in humans listening to spectrally altered speech. Using mathematical modeling, we determined that the same computational principles of SFC apply to bat echolocation and human speech, confirming the prediction of our hypothesis.


Assuntos
Quirópteros , Ecolocação , Retroalimentação Sensorial , Vocalização Animal , Animais , Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Retroalimentação Sensorial/fisiologia , Feminino , Humanos , Modelos Biológicos , Fala/fisiologia , Vocalização Animal/fisiologia
3.
Plant Biotechnol J ; 22(5): 1372-1386, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38263872

RESUMO

Fertile pollen is critical for the survival, fitness, and dispersal of flowering plants, and directly contributes to crop productivity. Extensive mutational screening studies have been carried out to dissect the genetic regulatory network determining pollen fertility, but we still lack fundamental knowledge about whether and how pollen fertility is controlled in natural populations. We used a genome-wide association study (GWAS) to show that ZmGEN1A and ZmMSH7, two DNA repair-related genes, confer natural variation in maize pollen fertility. Mutants defective in these genes exhibited abnormalities in meiotic or post-meiotic DNA repair, leading to reduced pollen fertility. More importantly, ZmMSH7 showed evidence of selection during maize domestication, and its disruption resulted in a substantial increase in grain yield for both inbred and hybrid. Overall, our study describes the first systematic examination of natural genetic effects on pollen fertility in plants, providing valuable genetic resources for optimizing male fertility. In addition, we find that ZmMSH7 represents a candidate for improvement of grain yield.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Redes Reguladoras de Genes , Pólen/genética , Fertilidade/genética , Grão Comestível/genética
4.
J Exp Biol ; 227(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38352987

RESUMO

Doppler shift compensation (DSC) is a unique feature observed in certain species of echolocating bats and is hypothesized to be an adaptation to detecting fluttering insects. However, current research on DSC has primarily focused on bats that are not engaged in foraging activities. In this study, we investigated the DSC performance of Pratt's roundleaf bat, Hipposideros pratti, which was trained to pursue insects in various motion states within a laboratory setting. Our study yielded three main results. First, H. pratti demonstrated highly precise DSC during insect pursuit, aligning with previous findings of other flutter-detecting foragers during orientation or landing tasks. Second, we found that the motion state of the insect prey had little effect on the DSC performance of H. pratti. Third, we observed variations in the DSC performance of H. pratti throughout the course of insect pursuit. The bats exhibited the highest DSC performance during the phase of maximum flight speed but decreased performance during the phase of insect capture. These findings of high precision overall and the time-dependent performance of DSC during insect pursuit support the hypothesis that DSC is an adaptation to detecting fluttering insects.


Assuntos
Quirópteros , Ecolocação , Animais , Efeito Doppler , Insetos , Comportamento Predatório
5.
Plant Biotechnol J ; 21(10): 1978-1989, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341033

RESUMO

The number of pollen grains is a critical determinant of reproductive success in seed plants and varies among species and individuals. However, in contrast with many mutant-screening studies relevant to anther and pollen development, the natural genetic basis for variations in pollen number remains largely unexplored. To address this issue, we carried out a genome-wide association study in maize, ultimately revealing that a large presence/absence variation in the promoter region of ZmRPN1 alters its expression level and thereby contributes to pollen number variation. Molecular analyses showed that ZmRPN1 interacts with ZmMSP1, which is known as a germline cell number regulator, and facilitates ZmMSP1 localization to the plasma membrane. Importantly, ZmRPN1 dysfunction resulted in a substantial increase in pollen number, consequently boosting seed production by increasing female-male planting ratio. Together, our findings uncover a key gene controlling pollen number, and therefore, modulation of ZmRPN1 expression could be efficiently used to develop elite pollinators for modern hybrid maize breeding.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/metabolismo , Melhoramento Vegetal , Pólen/genética , Sementes/genética
6.
New Phytol ; 237(2): 585-600, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266961

RESUMO

Extensive mutational screening studies have documented genes regulating anther and pollen development. Knowledge concerning how formation of male germinal cell is arithmetically controlled in natural populations, under different environmental conditions, is lacking. We counted pollen number within a single anther and a maize-teosinte BC2 S3 recombinant inbred line population to identify ZmCCT10 as a major determinant of pollen number variation. ZmCCT10 was originally identified as a photoperiod-sensitive negative regulator of flowering. ZmCCT10 inactivation, after transposon insertion within its promoter, is proposed to have accelerated maize spread toward higher latitudes, thus allowing temperate maize to flower under long-day conditions. We showed that the active ZmCCT10 allele decreased pollen formation. As different active and inactive ZmCCT10 alleles have been found in natural maize populations, this represents the first report of a gene controlling pollen number in a crop natural population. These findings suggest that higher pollen number, which provides a competitive advantage in open-pollinated populations, may have been one of the major driving forces for the selection of an inactive ZmCCT10 allele during tropical maize domestication. We provide evidence that ZmCCT10 has opposite effects on cell proliferation of archesporial and tapetum cells and it modulates expression of key regulators during early anther development.


Assuntos
Fotoperíodo , Zea mays , Zea mays/genética , Flores/fisiologia
7.
Mol Ecol ; 32(21): 5864-5876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37789799

RESUMO

Predator-prey interactions are important but difficult to study in the field. Therefore, laboratory studies are often used to examine the outcomes of predator-prey interactions. Previous laboratory studies have shown that moth hearing and ultrasound production can help prey avoid being eaten by bats. We report here that laboratory behavioural outcomes may not accurately reflect the outcomes of field bat-moth interactions. We tested the success rates of two bat species capturing moths with distinct anti-bat tactics using behavioural experiments. We compared the results with the dietary composition of field bats using next-generation DNA sequencing. Rhinolophus episcopus and Rhinolophus osgoodi had a lower rate of capture success when hunting for moths that produce anti-bat clicks than for silent eared moths and earless moths. Unexpectedly, the success rates of the bats capturing silent eared moths and earless moths did not differ significantly from each other. However, the field bats had a higher proportion of silent eared moths than that of earless moths and that of clicking moths in their diets. The difference between the proportions of silent eared moths and earless moths in the bat diets can be explained by the difference between their abundance in bat foraging habitats. These findings suggest that moth defensive tactics, bat countertactics and moth availability collectively shape the diets of insectivorous bats. This study illustrates the importance of using a combination of behavioural experiments and molecular genetic techniques to reveal the complex interactions between predators and prey in nature.


Assuntos
Quirópteros , Ecolocação , Mariposas , Animais , Mariposas/genética , Quirópteros/genética , Comportamento Predatório , Dieta
8.
Artigo em Inglês | MEDLINE | ID: mdl-36266485

RESUMO

Diverse animal taxa are capable of rapidly modifying vocalizations to mitigate interference from environmental noise. Echolocating bats, for example, must frequently perform sonar tasks in the presence of interfering sounds. Numerous studies have documented sound production flexibility in echolocating bats; however, it remains unknown whether noise-induced vocal modifications (NIVMs) mitigate interference effects on echoes or calls. In this study, we leverage echo level compensation behavior of echolocating bats to answer this question. Using a microphone array, we recorded echolocation calls of Hipposideros pratti trained to approach and land on a perch in the laboratory under quiet and noise conditions. We found that H. pratti exhibited echo level compensation behavior during approaching flights, which depended critically on distance to the landing perch. Broadcast noise delayed and affected the rate of echo level compensation in H. pratti. Moreover, H. pratti increased vocalization amplitude, i.e., exhibited the Lombard effect, while also adjusting call duration and bandwidth with increasing noise levels. Quantitative analyses of the data show that H. pratti relies on echo feedback, not vocal feedback, to adjust signals in the presence of noise. These findings provide compelling evidence that NIVMs in echolocating animals and non-echolocating animals operate through different mechanisms.


Assuntos
Quirópteros , Ecolocação , Animais , Vocalização Animal/fisiologia , Quirópteros/fisiologia , Retroalimentação , Ruído , Ecolocação/fisiologia
9.
Environ Monit Assess ; 195(12): 1399, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37914972

RESUMO

Heavy metal concentrations represent important pollution evaluation indices, and it is necessary to assess the potential environmental and health risks from heavy metals associated with coking wastes from coking plants. In this study, coking sludge (CS), tar residue (TR), coke powder (CP), and sulfur paste (SP) from three coking plants (Plant A, Plant B, and Plant C) in central, western, and southern Shanxi Province and from soils surrounding Plant A were selected as the research objects, and the distributions of Cu, Ni, Pb, Zn, Mn, Cd, and Cr were determined. The results showed that Cd in the four solid wastes far exceeded the soil background value by a factor of 16~195, and the contents of Pb in TR (three plants) and CS (Plant C) exceeded the soil background values 19.70-, 23.57-, 14.46-, and 12.56-fold, respectively. Similarly, the concentrations of Cu, Ni, Pb, Zn, and Cd in soils were higher than the background values by factors of 31.18, 8.35, 34.79, 29.48, and 3.43, respectively. In addition, the Cu, Ni, Pb, and Cr in the four solid wastes and soils mainly existed in the residual state. As depth increased, the overall Ni, Pb, Mn, and Cd concentrations in soils increased. The high ecological risks associated with the four solid wastes were mainly due to the enrichment of Cd. Workers in coking plants face certain Cr health risks. This study provides theoretical support for the coking industry with respect to the treatment, disposal, and management of solid wastes.


Assuntos
Coque , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Resíduos Sólidos , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Esgotos/química , China
10.
Proc Biol Sci ; 289(1975): 20220397, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35611534

RESUMO

Global changes in response to human encroachment into natural habitats and carbon emissions are driving the biodiversity extinction crisis and increasing disease emergence risk. Host distributions are one critical component to identify areas at risk of viral spillover, and bats act as reservoirs of diverse viruses. We developed a reproducible ecological niche modelling pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given that several closely related viruses have been discovered and sarbecovirus-host interactions have gained attention since SARS-CoV-2 emergence. We assessed sampling biases and modelled current distributions of bats based on climate and landscape relationships and project future scenarios for host hotspots. The most important predictors of species distributions were temperature seasonality and cave availability. We identified concentrated host hotspots in Myanmar and projected range contractions for most species by 2100. Our projections indicate hotspots will shift east in Southeast Asia in locations greater than 2°C hotter in a fossil-fuelled development future. Hotspot shifts have implications for conservation and public health, as loss of population connectivity can lead to local extinctions, and remaining hotspots may concentrate near human populations.


Assuntos
Quirópteros , Vírus , Animais , COVID-19 , Quirópteros/virologia , Humanos , Saúde Pública , SARS-CoV-2
11.
Environ Monit Assess ; 195(1): 99, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369311

RESUMO

Heavy metal pollution in the soil surrounding solid wastes from coking plants poses potential threats to human health and has attracted widespread attention. This study is the first to assess the spatial variability and risks of heavy metals in the soil surrounding solid waste from coking plants. The results showed that the concentrations of Cu, Ni, Pb, and Cd in the soil were much higher than the background value of the soil. Solid waste had a clear influence on the contents of Ni, Cd, Mn, Pb, and Cr in the soil. The ecological risk assessment of heavy metal pollution demonstrated that the pollution degree of Cu, Pb, and Cd was more serious than others, and the ecological risk of heavy metals was mainly caused by Cd in the soil. The human health risk assessment showed that adults and children near coking plants might face carcinogenic risk from exposure to Cr. This study can provide a theoretical basis for the prevention and management of soil heavy metal pollution surrounding solid waste in coking plants.


Assuntos
Coque , Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo , Resíduos Sólidos , Poluentes do Solo/análise , Cádmio , Chumbo , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , China
12.
BMC Genomics ; 22(1): 664, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521344

RESUMO

BACKGROUND: Root hair, a special type of tubular-shaped cell, outgrows from root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stress. Although many genes involved in root hair development have been identified, genetic basis of natural variation in root hair growth has never been explored. RESULTS: Here, we utilized a maize association panel including 281 inbred lines with tropical, subtropical, and temperate origins to decipher the phenotypic diversity and genetic basis of root hair length. We demonstrated significant associations of root hair length with many metabolic pathways and other agronomic traits. Combining root hair phenotypes with 1.25 million single nucleotide polymorphisms (SNPs) via genome-wide association study (GWAS) revealed several candidate genes implicated in cellular signaling, polar growth, disease resistance and various metabolic pathways. CONCLUSIONS: These results illustrate the genetic basis of root hair length in maize, offering a list of candidate genes predictably contributing to root hair growth, which are invaluable resource for the future functional investigation.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Resistência à Doença , Fenótipo , Polimorfismo de Nucleotídeo Único , Zea mays/genética
13.
Plant Physiol ; 182(1): 332-344, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31591151

RESUMO

N 6 -methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA. Although m6A has been demonstrated to affect almost all aspects of RNA metabolism, its global contribution to the post-transcriptional balancing of translational efficiency remains elusive in plants. In this study, we performed a parallel analysis of the transcriptome-wide mRNA m6A distribution and polysome profiling in two maize (Zea mays) inbred lines to assess the global correlation of m6A modification with translational status. m6A sites are widely distributed in thousands of protein-coding genes, confined to a consensus motif and primarily enriched in the 3' untranslated regions, and highly coordinated with alternative polyadenylation usage, suggesting a role of m6A modification in regulating alternative polyadenylation site choice. More importantly, we identified that the m6A modification shows multifaceted correlations with the translational status depending on its strength and genic location. Moreover, we observed a substantial intraspecies variation in m6A modification, and this natural variation was shown to be partly driven by gene-specific expression and alternative splicing. Together, these findings provide an invaluable resource for ascertaining transcripts that are subject to m6A modification in maize and pave the way to a better understanding of natural m6A variation in mediating gene expression regulation.


Assuntos
RNA Mensageiro/metabolismo , Zea mays/genética , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Transcriptoma/genética
14.
J Exp Bot ; 72(8): 2933-2946, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33606877

RESUMO

Heterosis has been extensively utilized to increase productivity in crops, yet the underlying molecular mechanisms remain largely elusive. Here, we generated transcriptome-wide profiles of mRNA abundance, m6A methylation, and translational efficiency from the maize F1 hybrid B73×Mo17 and its two parental lines to ascertain the contribution of each regulatory layer to heterosis at the seedling stage. We documented that although the global abundance and distribution of m6A remained unchanged, a greater number of genes had gained an m6A modification in the hybrid. Superior variations were observed at the m6A modification and translational efficiency levels when compared with mRNA abundance between the hybrid and parents. In the hybrid, the vast majority of genes with m6A modification exhibited a non-additive expression pattern, the percentage of which was much higher than that at levels of mRNA abundance and translational efficiency. Non-additive genes involved in different biological processes were hierarchically coordinated by discrete combinations of three regulatory layers. These findings suggest that transcriptional and post-transcriptional regulation of gene expression make distinct contributions to heterosis in hybrid maize. Overall, this integrated multi-omics analysis provides a valuable portfolio for interpreting transcriptional and post-transcriptional regulation of gene expression in hybrid maize, and paves the way for exploring molecular mechanisms underlying hybrid vigor.


Assuntos
Vigor Híbrido , Zea mays , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Vigor Híbrido/genética , Hibridização Genética , Transcriptoma , Zea mays/genética
15.
PLoS Biol ; 16(10): e2006422, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30365484

RESUMO

Temporal analysis of sound is fundamental to auditory processing throughout the animal kingdom. Echolocating bats are powerful models for investigating the underlying mechanisms of auditory temporal processing, as they show microsecond precision in discriminating the timing of acoustic events. However, the neural basis for microsecond auditory discrimination in bats has eluded researchers for decades. Combining extracellular recordings in the midbrain inferior colliculus (IC) and mathematical modeling, we show that microsecond precision in registering stimulus events emerges from synchronous neural firing, revealed through low-latency variability of stimulus-evoked extracellular field potentials (EFPs, 200-600 Hz). The temporal precision of the EFP increases with the number of neurons firing in synchrony. Moreover, there is a functional relationship between the temporal precision of the EFP and the spectrotemporal features of the echolocation calls. In addition, EFP can measure the time difference of simulated echolocation call-echo pairs with microsecond precision. We propose that synchronous firing of populations of neurons operates in diverse species to support temporal analysis for auditory localization and complex sound processing.


Assuntos
Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Animais , Vias Auditivas/fisiologia , Fenômenos Biofísicos , Quirópteros/anatomia & histologia , Simulação por Computador , Ecolocação/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Colículos Inferiores/citologia , Colículos Inferiores/fisiologia , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Localização de Som/fisiologia
16.
Biol Conserv ; 254: 108952, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518772

RESUMO

With >1 400 species, bats comprise the second-largest order of mammals and provide critical ecological services as insect consumers, pollinators, and seed dispersers. Yet, bats are frequently associated with infectious human diseases such as SARS, MERS, and Ebola. As early as the end of January 2020, several virological studies have suggested bats as a probable origin for SARS-CoV-2, the causative agent of COVID-19. How does the public view the role of bats in COVID-19? Here we report pilot data collected shortly after the outbreak of COVID-19 using two online surveys, combined with a conservation intervention experiment, primarily on people who are receiving or have received higher education in China. We found that 84% of the participants of an online survey (n = 13 589) have misunderstood the relationship between bats and COVID-19, which strengthened negative attitudes towards bats. Knowledge of bats, gender, and education level of the participants affected their attitudes towards bats. Participants who indicated a better knowledge of bats had a more positive attitude towards bats. The proportion of female participants who had negative attitudes towards bats was higher than that of male participants. Participants with a higher education level indicated a more positive attitude towards bats after the outbreak of COVID-19. A specially prepared bat conservation lecture improved peoples' knowledge of bats and the positive attitudes, but failed to correct the misconception that bats transmit SARS-CoV-2 to humans directly. We suggest that the way virologists frame the association of bats with diseases, the countless frequently inaccurate media coverages, and the natural perceptual bias of bats carrying and transmitting diseases to humans contributed to the misunderstandings. This probably led to a rise in the events of evicting bats from dwellings and structures by humans and the legislative proposal for culling disease-relevant wildlife in China. A better understanding of the relationship between disease, wildlife and human health could help guide the public and policymakers in an improved program for bat conservation.

17.
Drug Dev Ind Pharm ; 47(11): 1693-1699, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35285771

RESUMO

The COVID-19 is caused by the SARS-CoV-2, which is extremely infectious. Numerous virologist suggestions and guidelines advised using P2/N95 masks, gloves, goggles, face-shields, and frocks or gowns as routine specific protective tools during airway management to protect healthcare personnel from infection (PPE). However, numerous imitation research has indicated that conventional PPE cannot adequately protect healthcare personnel. Since then, numerous firms and healthcare professionals have created their personal reformed devices 'aerosol containment devices' (ACD). Their usage has expanded throughout the world without being properly evaluated for usefulness, efficacy, or safety. The practice of 'ACD' has been shown to make tracheal intubation (TI) more problematic in several simulated tests. Furthermore, the device should limit the transmission of droplets from a patient; however, it might put healthcare personnel at danger of being exposed to greater levels of viral aerosols. Consequently, the existing state of information suggests that 'ACD' deprived of a vacuum mechanism can simply protect healthcare personnel against viral transmission to a limited extent. We search various databases for the literature with keywords 'COVID-19,' 'aerosol box,' 'aerosol contaminations,' and 'droplet contaminations.' The current review focused on the aerosol box from various perspectives, including their mechanism, optimum time of use, the spread of aerosol control, current gaps, and future perspective for bridging those gaps.


Assuntos
COVID-19 , Aerossóis , COVID-19/prevenção & controle , Pessoal de Saúde , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Intubação Intratraqueal , Equipamento de Proteção Individual , SARS-CoV-2
18.
Plant J ; 98(1): 71-82, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30556198

RESUMO

Root hair, a special type of tubular-shaped cell, outgrows from the root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stresses. Studies in the model plant Arabidopsis have revealed that root-hair initiation and elongation are hierarchically regulated by a group of basic helix-loop-helix (bHLH) transcription factors (TFs). However, knowledge regarding the regulatory pathways of these bHLH TFs in controlling root hair growth remains limited. In this study, RNA-seq analysis was conducted to profile the transcriptome in the elongating maize root hair and >1000 genes with preferential expression in root hair were identified. A consensus cis-element previously featured as the potential bHLH-TF binding sites was present in the regulatory regions for the majority of the root hair-preferentially expressed genes. In addition, an individual change in ZmLRL5, the highest-expressed bHLH-TF in maize root hair resulted in a dramatic reduction in the elongation of root hair, and rendered the growth of root hair hypersensitive to translational inhibition. Moreover, RNA-seq, yeast-one-hybrid and ribosome profile analysis suggested that ZmLRL5 may function as a key player in orchestrating the translational process by directly regulating the expression of translational processes/ribosomal genes during maize root hair growth.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Transcriptoma , Zea mays/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de RNA , Técnicas do Sistema de Duplo-Híbrido , Zea mays/crescimento & desenvolvimento
19.
J Exp Biol ; 223(Pt 19)2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32843365

RESUMO

Flexible vocal production control enables sound communication in both favorable and unfavorable conditions. The Lombard effect, which describes a rise in call amplitude with increasing ambient noise, is a widely exploited strategy by vertebrates to cope with interfering noise. In humans, the Lombard effect influences the lexical stress through differential amplitude modulation at a sub-call syllable level, which so far has not been documented in animals. Here, we bridge this knowledge gap with two species of Hipposideros bats, which produce echolocation calls consisting of two functionally well-defined units: the constant-frequency (CF) and frequency-modulated (FM) components. We show that ambient noise induced a strong, but differential, Lombard effect in the CF and FM components of the echolocation calls. We further report that the differential amplitude compensation occurred only in the spectrally overlapping noise conditions, suggesting a functional role in releasing masking. Lastly, we show that both species of bats exhibited a robust Lombard effect in the spectrally non-overlapping noise conditions, which contrasts sharply with the existing evidence. Our data highlight echolocating bats as a potential mammalian model for understanding vocal production control.


Assuntos
Quirópteros , Ecolocação , Animais , Humanos , Ruído , Som , Vocalização Animal
20.
Proc Natl Acad Sci U S A ; 114(41): 10978-10983, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973851

RESUMO

Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.


Assuntos
Adaptação Fisiológica , Percepção Auditiva/fisiologia , Quirópteros/fisiologia , Ecolocação/fisiologia , Som , Ultrassom , Vocalização Animal/fisiologia , Animais , Comportamento Animal , Retroalimentação , Voo Animal
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa