Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Cell Commun Signal ; 19(1): 102, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635112

RESUMO

Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Técnicas de Cultura de Células , Glioma/genética , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Organoides/metabolismo , Organoides/patologia , Prognóstico
2.
Neurol Sci ; 40(2): 235-241, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30483992

RESUMO

BACKGROUND: Based on the results of randomized, double-blind, placebo-controlled trials, the benefit and safety of edaravone in the treatment of amyotrophic lateral sclerosis remain controversial. We performed a meta-analysis to evaluate the efficacy and safety of edaravone in the treatment of this disease. METHODS: We searched PubMed, the Cochrane Library, and Embase from the inception of electronic data to April 2018. We included randomized, double-blind, placebo-controlled trials reporting amyotrophic lateral sclerosis patients receiving 60-mg intravenous edaravone or intravenous saline placebo for 24 weeks. The primary efficacy evaluation was changed in Amyotrophic Lateral Sclerosis Functional Rating Scale score from baseline to after the trial. Measure of safety was the frequency of investigated adverse events and serious adverse events. Data synthesis and analysis and evaluation of risk of bias were performed using RevMan 5.3 software. Heterogeneity among studies was evaluated with the I2 statistic. RESULTS: A total of 367 patients were analyzed across three randomized controlled trials (183 patients receiving intravenous edaravone; 184 receiving placebo). A difference in ALSFRS-R score between groups at 24 weeks was found (mean difference [MD] = 1.63, 95% confidence interval [CI] 0.26-3.00, P = .02). No differences in the frequency of adverse events (odds ratio [OR] = 1.22, 95% CI 0.68-2.19, P = .50) or serious adverse events (OR = 0.71, 95% CI 0.43-1.19, P = .20) were found. CONCLUSION: Intravenous edaravone is efficacious in amyotrophic lateral sclerosis patients, with no severe adverse effects. Additional reliable randomized controlled trials with larger sample sizes will further assess the efficacy and safety of edaravone in amyotrophic lateral sclerosis. CLINICAL TRIAL REGISTRATION: The systematic review and meta-analysis was registered in the international prospective register of systematic reviews. (PROSPERO registration number: CRD42018096191; http://www.crd.york.ac.uk/PROSPERO .).


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Edaravone/efeitos adversos , Edaravone/uso terapêutico , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Cell Death Dis ; 15(5): 318, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710703

RESUMO

Glioblastoma stem cells (GSCs) play a key role in glioblastoma (GBM) resistance to temozolomide (TMZ) chemotherapy. With the increase in research on the tumour microenvironment, exosomes secreted by GSCs have become a new focus in GBM research. However, the molecular mechanism by which GSCs affect drug resistance in GBM cells via exosomes remains unclear. Using bioinformatics analysis, we identified the specific expression of ABCB4 in GSCs. Subsequently, we established GSC cell lines and used ultracentrifugation to extract secreted exosomes. We conducted in vitro and in vivo investigations to validate the promoting effect of ABCB4 and ABCB4-containing exosomes on TMZ resistance. Finally, to identify the transcription factors regulating the transcription of ABCB4, we performed luciferase assays and chromatin immunoprecipitation-quantitative PCR. Our results indicated that ABCB4 is highly expressed in GSCs. Moreover, high expression of ABCB4 promoted the resistance of GSCs to TMZ. Our study found that GSCs can also transmit their highly expressed ABCB4 to differentiated glioma cells (DGCs) through exosomes, leading to high expression of ABCB4 in these cells and promoting their resistance to TMZ. Mechanistic studies have shown that the overexpression of ABCB4 in GSCs is mediated by the transcription factor ATF3. In conclusion, our results indicate that GSCs can confer resistance to TMZ in GBM by transmitting ABCB4, which is transcribed by ATF3, through exosomes. This mechanism may lead to drug resistance and recurrence of GBM. These findings contribute to a deeper understanding of the mechanisms underlying drug resistance in GBM and provide novel insights into its treatment.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Fator 3 Ativador da Transcrição , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Exossomos , Glioblastoma , Células-Tronco Neoplásicas , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Exossomos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa