Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 59(3): 281-292, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31872914

RESUMO

Medulloblastoma (MB) is the most common and deadliest brain tumor in children. Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is a scaffolding protein and its oncogenic signaling is implicated in the progression of several cancers. However, the role of PELP1 in the progression of MB remains unknown. The objective of this study is to examine the role of PELP1 in the progression of MB. Immunohistochemical analysis of MB tissue microarrays revealed that PELP1 is overexpressed in the MB specimens compared to normal brain. Knockdown of PELP1 reduced cell proliferation, cell survival, and cell invasion of MB cell lines. The RNA-sequencing analysis revealed that PELP1 knockdown significantly downregulated the pathways related to inflammation and extracellular matrix. Gene set enrichment analysis confirmed that the PELP1-regulated genes were negatively correlated with nuclear factor-κB (NF-κB), extracellular matrix, and angiogenesis gene sets. Interestingly, PELP1 knockdown reduced the expression of NF-κB target genes, NF-κB reporter activity, and inhibited the nuclear translocation of p65. Importantly, the knockdown of PELP1 significantly reduced in vivo MB progression in orthotopic models and improved the overall mice survival. Collectively, these results suggest that PELP1 could be a novel target for therapeutic intervention in MB.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas Correpressoras/metabolismo , Meduloblastoma/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Correpressoras/análise , Proteínas Correpressoras/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fatores de Transcrição/análise , Fatores de Transcrição/genética
2.
Breast Cancer Res ; 21(1): 150, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878959

RESUMO

BACKGROUND: CDK4/6 inhibitors in combination with endocrine therapy (AE/AI/SERDs) are approved for the treatment of ER+ advanced breast cancer (BCa). However, not all patients benefit from CDK4/6 inhibitors therapy. We previously reported a novel therapeutic agent, ERX-11, that binds to the estrogen receptor (ER) and modulates ER-coregulator interactions. Here, we tested if the combination of ERX-11 with agents approved for ER+ BCa would be more potent. METHODS: We tested the effect of combination therapy using BCa cell line models, including those that have acquired resistance to tamoxifen, letrozole, or CDK4/6 inhibitors or have been engineered to express mutant forms of the ER. In vitro activity was tested using Cell Titer-Glo, MTT, and apoptosis assays. Mechanistic studies were conducted using western blot, reporter gene assays, RT-qPCR, and mass spectrometry approaches. Xenograft, patient-derived explants (PDEs), and xenograft-derived explants (XDE) were used for preclinical evaluation and toxicity. RESULTS: ERX-11 inhibited the proliferation of therapy-resistant BCa cells in a dose-dependent manner, including ribociclib resistance. The combination of ERX-11 and CDK4/6 inhibitor was synergistic in decreasing the proliferation of both endocrine therapy-sensitive and endocrine therapy-resistant BCa cells, in vitro, in xenograft models in vivo, xenograft-derived explants ex vivo, and in primary patient-derived explants ex vivo. Importantly, the combination caused xenograft tumor regression in vivo. Unbiased global mass spectrometry studies demonstrated profound decreases in proliferation markers with combination therapy and indicated global proteomic changes in E2F1, ER, and ER coregulators. Mechanistically, the combination of ERX-11 and CDK4/6 inhibitor decreased the interaction between ER and its coregulators, as evidenced by immunoprecipitation followed by mass spectrometry studies. Biochemical studies confirmed that the combination therapy significantly altered the expression of proteins involved in E2F1 and ER signaling, and this is primarily driven by a transcriptional shift, as noted in gene expression studies. CONCLUSIONS: Our results suggest that ERX-11 inhibited the proliferation of BCa cells resistant to both endocrine therapy and CDK4/6 inhibitors in a dose-dependent manner and that the combination of ERX-11 with a CDK4/6 inhibitor may represent a viable therapeutic approach.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Moduladores de Receptor Estrogênico/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Humanos , Imuno-Histoquímica , Camundongos
3.
Mol Oncol ; 15(4): 1146-1161, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33269540

RESUMO

A significant proportion of estrogen receptor-positive (ER+) breast cancer (BC) initially responds to endocrine therapy but eventually evolves into therapy-resistant BC. Transcription factor AP-2 gamma (TFAP2C) is a known regulator of ER activity, and high expression of TFAP2C is associated with a decreased response to endocrine therapies. PELP1 is a nuclear receptor coregulator, commonly overexpressed in BC, and its levels are correlated with poorer survival. In this study, we identified PELP1 as a novel interacting protein of TFAP2C. RNA-seq analysis of PELP1 knockdown BC cells followed by transcription factor motif prediction pointed to TFAP2C being enriched in PELP1-regulated genes. Gene set enrichment analysis (GSEA) revealed that the TFAP2C-PELP1 axis induced a subset of common genes. Reporter gene assays confirmed PELP1 functions as a coactivator of TFAP2C. Mechanistic studies showed that PELP1-mediated changes in histone methylation contributed to increased expression of the TFAP2C target gene RET. Furthermore, the TFAP2C-PELP1 axis promoted the activation of the RET signaling pathway, which contributed to downstream activation of AKT and ERK pathways in ER+ BC cells. Concomitantly, knockdown of PELP1 attenuated these effects mediated by TFAP2C. Overexpression of TFAP2C contributed to increased cell proliferation and therapy resistance in ER+ BC models, while knockdown of PELP1 mitigated these effects. Utilizing ZR75-TFAP2C xenografts with or without PELP1 knockdown, we provided genetic evidence that endogenous PELP1 is essential for TFAP2C-driven BC progression in vivo. Collectively, our studies demonstrated that PELP1 plays a critical role in TFAP2C transcriptional and tumorigenic functions in BC and blocking the PELP1-TFAP2C axis could have utility for treating therapy resistance.


Assuntos
Neoplasias da Mama/genética , Carcinogênese , Proteínas Correpressoras/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histonas , Humanos , Camundongos SCID , Transplante de Neoplasias , Regiões Promotoras Genéticas
4.
Commun Biol ; 4(1): 1235, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716410

RESUMO

Histone deacetylase inhibitors (HDACi) are identified as novel therapeutic agents, however, recent clinical studies suggested that they are marginally effective in treating triple negative breast cancer (TNBC). Here, we show that first-in-class Leukemia Inhibitory Factor Receptor (LIFRα) inhibitor EC359 could enhance the therapeutic efficacy of HDACi against TNBC. We observed that both targeted knockdown of LIFR with CRISPR or treatment with EC359 enhanced the potency of four different HDACi in reducing cell viability, cell survival, and enhanced apoptosis compared to monotherapy in TNBC cells. RNA-seq studies demonstrated oncogenic/survival signaling pathways activated by HDACi were attenuated by the EC359 + HDACi therapy. Importantly, combination therapy potently inhibited the growth of TNBC patient derived explants, cell derived xenografts and patient-derived xenografts in vivo. Collectively, our results suggest that targeted inhibition of LIFR can enhance the therapeutic efficacy of HDACi in TNBC.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Camundongos , Camundongos SCID
5.
Sci Rep ; 9(1): 6124, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992459

RESUMO

Glioblastoma (GBM) is the most commonly diagnosed brain tumor that exhibit high mortality rate and chemotherapy resistance is a major clinical problem. Recent studies suggest that estrogen receptor beta (ERß), may function as a tumor suppressor in GBM. However, the mechanism(s) by which ERß contributes to GBM suppression and chemotherapy response remains unknown. We examined the role of ERß in the DNA damage response of GBM cells, and tested whether ERß sensitizes GBM cells to chemotherapy. Cell viability and survival assays using multiple epitope tagged ERß expressing established and primary GBM cells demonstrated that ERß sensitizes GBM cells to DNA damaging agents including temozolomide (TMZ). RNA-seq studies using ERß overexpression models revealed downregulation of number of genes involved in DNA recombination and repair, ATM signaling and cell cycle check point control. Gene set enrichment analysis (GSEA) suggested that ERß-modulated genes were correlated negatively with homologous recombination, mismatch repair and G2M checkpoint genes. Further, RT-qPCR analysis revealed that chemotherapy induced activation of cell cycle arrest and apoptosis genes were attenuated in ERßKO cells. Additionally, ERß overexpressing cells had a higher number of γH2AX foci following TMZ treatment. Mechanistic studies showed that ERß plays an important role in homologous recombination (HR) mediated repair and ERß reduced expression and activation of ATM upon DNA damage. More importantly, GBM cells expressing ERß had increased survival when compared to control GBM cells in orthotopic GBM models. ERß overexpression further enhanced the survival of mice to TMZ therapy in both TMZ sensitive and TMZ resistant GBM models. Additionally, IHC analysis revealed that ERß tumors had increased expression of γH2AX and cleaved caspase-3. Using ERß-overexpression and ERß-KO GBM model cells, we have provided the evidence that ERß is required for optimal chemotherapy induced DNA damage response and apoptosis in GBM cells.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Receptor beta de Estrogênio/metabolismo , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos Alquilantes/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Receptor beta de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Glioblastoma/genética , Glioblastoma/patologia , Histonas/metabolismo , Humanos , Masculino , Camundongos , RNA-Seq , Reparo de DNA por Recombinação , Transdução de Sinais , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 18(8): 1341-1354, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31142661

RESUMO

Leukemia inhibitory factor receptor (LIFR) and its ligand LIF play a critical role in cancer progression, metastasis, stem cell maintenance, and therapy resistance. Here, we describe a rationally designed first-in-class inhibitor of LIFR, EC359, which directly interacts with LIFR to effectively block LIF/LIFR interactions. EC359 treatment exhibits antiproliferative effects, reduces invasiveness and stemness, and promotes apoptosis in triple-negative breast cancer (TNBC) cell lines. The activity of EC359 is dependent on LIF and LIFR expression, and treatment with EC359 attenuated the activation of LIF/LIFR-driven pathways, including STAT3, mTOR, and AKT. Concomitantly, EC359 was also effective in blocking signaling by other LIFR ligands (CTF1, CNTF, and OSM) that interact at LIF/LIFR interface. EC359 significantly reduced tumor progression in TNBC xenografts and patient-derived xenografts (PDX), and reduced proliferation in patient-derived primary TNBC explants. EC359 exhibits distinct pharmacologic advantages, including oral bioavailability, and in vivo stability. Collectively, these data support EC359 as a novel targeted therapeutic that inhibits LIFR oncogenic signaling.See related commentary by Shi et al., p. 1337.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Humanos , Fator Inibidor de Leucemia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Receptores de OSM-LIF , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa