Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(30): e2201933, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35789094

RESUMO

Selective induction of tumor thrombus infarction is a promising antitumor strategy. Non-persistent embolism due to non-compacted thrombus and activated fibrinolytic system within the tumor large blood vessels and tumor margin recurrence are the main therapeutic bottlenecks. Herein, an erythrocyte membrane-coated invisible acoustic-sensitive nanoparticle (TXA+DOX/PFH/RBCM@cRGD) is described, which can induce tumor thrombus infarction by precisely damaging tumor vascular endothelium. It is revealed that TXA+DOX/PFH/RBCM@cRGD can effectively accumulate on the endothelial surface of tumor vessels with the help of the red blood cell membrane (RBCM) stealth coating and RGD cyclic peptide (cRGD), which can be delivered in a targeted manner as nanoparticle missiles. As a kind of phase-change material, perfluorohexane (PFH) nanodroplets possess excellent acoustic responsiveness. Acoustic-sensitive missiles can undergo an acoustic phase transition and intense cavitation with response to low-intensity focused ultrasound (LIFU), damaging the tumor vascular endothelium, rapidly initiating the coagulation cascade, and forming thromboembolism in the tumor vessels. The drugs loaded in the inner water phase are released explosively. Tranexamic acid (TXA) inhibits the fibrinolytic system, and doxorubicin (DOX) eliminates the margin survival. In summary, a stealthy and acoustically responsive multifunctional nanoparticle delivery platform is successfully developed for inducing thrombus infarction by precisely damaging tumor vascular endothelium.


Assuntos
Nanopartículas , Neoplasias , Acústica , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Endotélio Vascular , Membrana Eritrocítica , Humanos , Infarto/tratamento farmacológico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
2.
Int J Pharm ; 623: 121890, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35690307

RESUMO

It is well known that the difficulty of siRNA therapeutic application is the lack of safe and effective delivery vector. Virosome is a nano vesicle composed of lipid membrane and membrane protein. It retains fusion protein without virus genetic material, and therefore has the reduced immunogenicity compared with viral vector. Virosomes have the potential to deliver protein and nucleic acid drugs, but the traditional preparation method of virosomes is quite limited. In this study, we firstly proposed to synthesize influenza virus hemagglutinin HA2 virosomes by cell-free protein synthesis. In this study, liposomes provided the hydrophobic lipid bilayer environment for the formation of HA2 protein multimer, which inhibited the aggregation of hydrophobic HA2 and improved HA2 protein expression. Chitosan as a rigid core adsorbed siRNA and improved the encapsulation efficiency of siRNA. In conclusion, the cell-free protein synthesis was used to prepare HA2 virosomes, which paves the way for constructing a novel nano vector with high delivery efficiency and biosafety for the delivery of siRNA.


Assuntos
Orthomyxoviridae , Virossomos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Lipossomos , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa