Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(21): 6533-8, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25971729

RESUMO

With the availability of nanoparticles with controlled size and shape, there has been renewed interest in the mechanical properties of polymer/nanoparticle blends. Despite the large number of theoretical studies, the effect of branching for nanofillers tens of nanometers in size on the elastic stiffness of these composite materials has received limited attention. Here, we examine the Young's modulus of nanocomposites based on a common block copolymer (BCP) blended with linear nanorods and nanoscale tetrapod Quantum Dots (tQDs), in electrospun fibers and thin films. We use a phenomenological lattice spring model (LSM) as a guide in understanding the changes in the Young's modulus of such composites as a function of filler shape. Reasonable agreement is achieved between the LSM and the experimental results for both nanoparticle shapes--with only a few key physical assumptions in both films and fibers--providing insight into the design of new nanocomposites and assisting in the development of a qualitative mechanistic understanding of their properties. The tQDs impart the greatest improvements, enhancing the Young's modulus by a factor of 2.5 at 20 wt.%. This is 1.5 times higher than identical composites containing nanorods. An unexpected finding from the simulations is that both the orientation of the nanoscale filler and the orientation of X-type covalent bonds at the nanoparticle-ligand interface are important for optimizing the mechanical properties of the nanocomposites. The tQD provides an orientational optimization of the interfacial and filler bonds arising from its three-dimensional branched shape unseen before in nanocomposites with inorganic nanofillers.

2.
Nano Lett ; 13(8): 3915-22, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23815586

RESUMO

A nanoscale, visible-light, self-sensing stress probe would be highly desirable in a variety of biological, imaging, and materials engineering applications, especially a device that does not alter the mechanical properties of the material it seeks to probe. Here we present the CdSe-CdS tetrapod quantum dot, incorporated into polymer matrices via electrospinning, as an in situ luminescent stress probe for the mechanical properties of polymer fibers. The mechanooptical sensing performance is enhanced with increasing nanocrystal concentration while causing minimal change in the mechanical properties even up to 20 wt % incorporation. The tetrapod nanoprobe is elastic and recoverable and undergoes no permanent change in sensing ability even upon many cycles of loading to failure. Direct comparisons to side-by-side traditional mechanical tests further validate the tetrapod as a luminescent stress probe. The tetrapod fluorescence stress-strain curve shape matches well with uniaxial stress-strain curves measured mechanically at all filler concentrations reported.


Assuntos
Compostos de Cádmio/química , Corantes Fluorescentes/química , Nanopartículas/química , Polímeros/química , Compostos de Selênio/química , Sulfetos/química , Pontos Quânticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa