Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(20): 205301, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31995523

RESUMO

By combining nanosphere lithography and glancing angle deposition, a morphological transition from disconnected patchy silver (Ag) coated nanosphere particles to a connected Ag nanohole sheet on close-packed nanosphere monolayers has been demonstrated, which significantly changes the optical property of the Ag nanostructure deposited. For different sized nanosphere monolayers, when the vapor incident angle was set to be 55°, the transmission spectra showed complicated features when the Ag deposition thickness was less than 60 nm. When the thickness was large enough (≥60 nm), a distinguished extraordinary optical transmission (EOT) peak was observed. The EOT peak wavelength position is independent of the Ag thickness deposited and is proportional to the nanosphere diameter. The obtained EOT peaks possess a high quality factor and have high transmission values compared to those reported in the literature for similar structures. The Monte Carlo growth simulations demonstrate the morphological transition from the patchy arrays to nanohole arrays while the electromagnetic numerical calculations confirm the change in the optical properties. Such a high quality EOT response could be used for constructing better sensors or developing other plasmonic applications.

2.
Phys Rev Lett ; 120(8): 086602, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543023

RESUMO

Hyperfine interaction (HFI), originating from the coupling between spins of charge carriers and nuclei, has been demonstrated to strongly influence the spin dynamics of localized charges in organic semiconductors. Nevertheless, the role of charge localization on the HFI strength in organic thin films has not yet been experimentally investigated. In this study, the statistical relation hypothesis that the effective HFI of holes in regioregular poly(3-hexylthiophene) (P3HT) is proportional to 1/N^{0.5} has been examined, where N is the number of the random nuclear spins within the envelope of the hole wave function. First, by studying magnetoconductance in hole-only devices made by isotope-labeled P3HT we verify that HFI is indeed the dominant spin interaction in P3HT. Second, assuming that holes delocalize fully over the P3HT polycrystalline domain, the strength of HFI is experimentally demonstrated to be proportional to 1/N^{0.52} in excellent agreement with the statistical relation. Third, the HFI of electrons in P3HT is about 3 times stronger than that of holes due to the stronger localization of the electrons. Finally, the effective HFI in organic light emitting diodes is found to be a superposition of effective electron and hole HFI. Such a statistical relation may be generally applied to other semiconducting polymers. This Letter may provide great benefits for organic optoelectronics, chemical reaction kinetics, and magnetoreception in biology.

3.
Adv Mater ; : e2302005, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37623325

RESUMO

Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.

4.
Nanoscale ; 12(4): 2479-2491, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31916549

RESUMO

Chiral nanohole array (CNA) films are fabricated by a simple and efficient shadow sphere lithography (SSL) method and achieve label-free enantiodiscrimination of biomolecules and drug molecules at the picogram level. The intrinsic mirror symmetry of the structure is broken by three subsequent depositions onto non-close packed nanosphere monolayers with different polar and azimuthal angles. Giant chiro-optical responses with a transmission as high as 45%, a chirality of 21°µm-1, and a g-factor of 0.17, respectively, are generated, which are among the largest values that have been reported in the literature. Such properties are due to the local rotating current density generated by a surface plasmon polariton as well as a strong local rotating field produced by localized surface plasmon resonance, which leads to the excitation of substantial local superchiral fields. The 70 nm-thick CNAs can achieve label-free enantiodiscrimination of biomolecules and drug molecules at the picogram level as demonstrated experimentally. All these advantages make the CNAs ready for low-cost, high-performance, and ultracompact polarization converters and label-free chiral sensors.


Assuntos
Nanoestruturas/química , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Nanopartículas Metálicas/química , Impressão Molecular , Nanosferas/química , Rotação Ocular , Prata/química , Propriedades de Superfície
5.
Sci Rep ; 10(1): 4964, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188917

RESUMO

We studied spin dynamics of charge carriers in the superlattice-like Ruddlesden-Popper hybrid lead iodide perovskite semiconductors, 2D (BA)2(MA)Pb2I7 (with MA = CH3NH3, and BA = CH3(CH2)3NH3), and 3D MAPbI3 using the magnetic field effect (MFE) on conductivity and electroluminescence in their light emitting diodes (LEDs) at cryogenic temperatures. The semiconductors with distinct structural/bulk inversion symmetry breaking, when combined with colossal intrinsic spin-orbit coupling (SOC), theoretically give rise to giant Rashba-type SOC. We found that the magneto-conductance (MC) magnitude increases monotonically with the emission intensity and saturates at ≈0.05% and 0.11% for the MAPbI3 and (BA)2(MA)Pb2I7, respectively. The magneto-electroluminescence (MEL) response with similar line shapes as the MC response has a significantly larger magnitude, and essentially stays constant at ≈0.22% and ≈0.20% for MAPbI3 and (BA)2(MA)Pb2I7, respectively. The sign and magnitude of the MC and MEL responses can be quantitatively explained in the framework of the Δg-based excitonic model using rate equations. Remarkably, the width of the MEL response in those materials linearly increases with increasing the applied electric field, where the Rashba coefficient in (BA)2(MA)Pb2I7 is estimated to be about 7 times larger than that in MAPbI3. Our studies might have significant impact on future development of electrically-controlled spin logic devices via Rashba-like effects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa