Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
BMC Bioinformatics ; 25(1): 142, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566005

RESUMO

BACKGROUND: The rapid advancement of new genomic sequencing technology has enabled the development of multi-omic single-cell sequencing assays. These assays profile multiple modalities in the same cell and can often yield new insights not revealed with a single modality. For example, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) simultaneously profiles the RNA transcriptome and the surface protein expression. The surface protein markers in CITE-Seq can be used to identify cell populations similar to the iterative filtration process in flow cytometry, also called "gating", and is an essential step for downstream analyses and data interpretation. While several packages allow users to interactively gate cells, they often do not process multi-omic sequencing datasets and may require writing redundant code to specify gate boundaries. To streamline the gating process, we developed CITEViz which allows users to interactively gate cells in Seurat-processed CITE-Seq data. CITEViz can also visualize basic quality control (QC) metrics allowing for a rapid and holistic evaluation of CITE-Seq data. RESULTS: We applied CITEViz to a peripheral blood mononuclear cell CITE-Seq dataset and gated for several major blood cell populations (CD14 monocytes, CD4 T cells, CD8 T cells, NK cells, B cells, and platelets) using canonical surface protein markers. The visualization features of CITEViz were used to investigate cellular heterogeneity in CD14 and CD16-expressing monocytes and to detect differential numbers of detected antibodies per patient donor. These results highlight the utility of CITEViz to enable the robust classification of single cell populations. CONCLUSIONS: CITEViz is an R-Shiny app that standardizes the gating workflow in CITE-Seq data for efficient classification of cell populations. Its secondary function is to generate basic feature plots and QC figures specific to multi-omic data. The user interface and internal workflow of CITEViz uniquely work together to produce an organized workflow and sensible data structures for easy data retrieval. This package leverages the strengths of biologists and computational scientists to assess and analyze multi-omic single-cell datasets. In conclusion, CITEViz streamlines the flow cytometry gating workflow in CITE-Seq data to help facilitate novel hypothesis generation.


Assuntos
Leucócitos Mononucleares , Software , Humanos , Análise de Sequência de RNA/métodos , Fluxo de Trabalho , Citometria de Fluxo , Proteínas de Membrana , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Leukemia ; 37(2): 478-487, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526735

RESUMO

Mutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion. In granulocyte progenitors, Asxl1 deletion leads to hyperactivation of MYC and a quantitative decrease in neutrophil production. This loss of granulocyte production was not accompanied by significant changes in the landscape of covalent histone modifications. However, Asxl1 deletion results in a decrease in RNAPII promoter-proximal pausing in granulocyte progenitors, indicative of a global increase in productive transcription. These results suggest that ASXL1 inhibits productive transcription in granulocyte progenitors, identifying a new role for this epigenetic regulator in myeloid development.


Assuntos
Síndromes Mielodisplásicas , RNA Polimerase II , Proteínas Repressoras , Animais , Humanos , Camundongos , Células Precursoras de Granulócitos/patologia , Mutação , Síndromes Mielodisplásicas/genética , Proteínas Repressoras/genética , RNA Polimerase II/genética , Fatores de Transcrição/genética
3.
Leukemia ; 36(7): 1781-1793, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35590033

RESUMO

Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.


Assuntos
Histona Desmetilases , Leucemia Mieloide Aguda , Ciclo Celular , Linhagem Celular Tumoral , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
4.
J Thromb Haemost ; 20(6): 1437-1450, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253976

RESUMO

BACKGROUND: Ex vivo assays of platelet function critically inform mechanistic and clinical hematology studies, where effects of divergent blood processing methods on platelet composition are apparent, but unspecified. OBJECTIVE: Here, we evaluate how different blood anticoagulation options and processing times affect platelet function and protein content ex vivo. METHODS: Parallel blood samples were collected from healthy human donors into sodium citrate, acid citrate dextrose, EDTA or heparin, and processed over an extended time course for functional and biochemical experiments, including platelet proteome quantification with multiplexed tandem mass tag (TMT) labeling and triple quadrupole mass spectrometry (MS). RESULTS: Each anticoagulant had time-dependent effects on platelet function in whole blood. For instance, heparin enhanced platelet agonist reactivity, platelet-monocyte aggregate formation and platelet extracellular vesicle release, while EDTA increased platelet α-granule secretion. Following platelet isolation, TMT-MS quantified 3357 proteins amongst all prepared platelet samples. Altogether, >400 proteins were differentially abundant in platelets isolated from blood processed at 24 h versus 1 h post-phlebotomy, including proteins pertinent to membrane trafficking and exocytosis. Anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Platelets prepared from heparinized blood had higher levels of histone and neutrophil-associated proteins in a manner related to neutrophil extracellular trap (NET) formation and platelet:NET interactions in whole blood ex vivo. CONCLUSION: Our results demonstrate that different anticoagulants routinely used for blood collection have varying effects on platelets ex vivo, where methodology-associated alterations in platelet proteome may influence mechanistic, translational and biomarker studies.


Assuntos
Plaquetas , Proteoma , Anticoagulantes/análise , Anticoagulantes/farmacologia , Ácido Edético/análise , Ácido Edético/farmacologia , Heparina/farmacologia , Humanos , Proteoma/análise , Proteoma/farmacologia
5.
Front Neurosci ; 15: 720778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34580583

RESUMO

A history of traumatic brain injury (TBI) increases the odds of developing Alzheimer's disease (AD). The long latent period between injury and dementia makes it difficult to study molecular changes initiated by TBI that may increase the risk of developing AD. MicroRNA (miRNA) levels are altered in TBI at acute times post-injury (<4 weeks), and in AD. We hypothesized that miRNA levels in cerebrospinal fluid (CSF) following TBI in veterans may be indicative of increased risk for developing AD. Our population of interest is cognitively normal veterans with a history of one or more mild TBI (mTBI) at a chronic time following TBI. We measured miRNA levels in CSF from three groups of participants: (1) community controls with no lifetime history of TBI (ComC); (2) deployed Iraq/Afghanistan veterans with no lifetime history of TBI (DepC), and (3) deployed Iraq/Afghanistan veterans with a history of repetitive blast mTBI (DepTBI). CSF samples were collected at the baseline visit in a longitudinal, multimodal assessment of Gulf War veterans, and represent a heterogenous group of male veterans and community controls. The average time since the last blast mTBI experienced was 4.7 ± 2.2 years [1.5 - 11.5]. Statistical analysis of TaqManTM miRNA array data revealed 18 miRNAs with significant differential expression in the group comparisons: 10 between DepTBI and ComC, 7 between DepC and ComC, and 8 between DepTBI and DepC. We also identified 8 miRNAs with significant differential detection in the group comparisons: 5 in DepTBI vs. ComC, 3 in DepC vs. ComC, and 2 in DepTBI vs. DepC. When we applied our previously developed multivariable dependence analysis, we found 13 miRNAs (6 of which are altered in levels or detection) that show dependencies with participant phenotypes, e.g., ApoE. Target prediction and pathway analysis with miRNAs differentially expressed in DepTBI vs. either DepC or ComC identified canonical pathways highly relevant to TBI including senescence and ephrin receptor signaling, respectively. This study shows that both TBI and deployment result in persistent changes in CSF miRNA levels that are relevant to known miRNA-mediated AD pathology, and which may reflect early events in AD.

6.
J Caffeine Adenosine Res ; 10(1): 12-24, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32181443

RESUMO

Background: Lethal apnea is a significant cause of acute mortality following a severe traumatic brain injury (TBI). TBI is associated with a surge of adenosine, which also suppresses respiratory function in the brainstem. Methods and Materials: This study examined the acute and chronic effects of caffeine, an adenosine receptor antagonist, on acute mortality and morbidity after fluid percussion injury. Results: We demonstrate that, regardless of preinjury caffeine exposure, an acute bolus of caffeine given immediately following the injury dosedependently prevented lethal apnea and has no detrimental effects on motor performance following sublethal injuries. Finally, we demonstrate that chronic caffeine treatment after injury, but not caffeine withdrawal, impairs recovery of motor function. Conclusions: Preexposure of the injured brain to caffeine does not have a major impact on acute and delayed outcome parameters; more importantly, a single acute dose of caffeine after the injury can prevent lethal apnea regardless of chronic caffeine preexposure.

7.
J Alzheimers Dis ; 78(1): 245-263, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32955460

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) microRNA (miRNA) biomarkers of Alzheimer's disease (AD) have been identified, but have not been evaluated in prodromal AD, including mild cognitive impairment (MCI). OBJECTIVE: To assess whether a set of validated AD miRNA biomarkers in CSF are also sensitive to early-stage pathology as exemplified by MCI diagnosis. METHODS: We measured the expression of 17 miRNA biomarkers for AD in CSF samples from AD, MCI, and cognitively normal controls (NC). We then examined classification performance of the miRNAs individually and in combination. For each miRNA, we assessed median expression in each diagnostic group and classified markers as trending linearly, nonlinearly, or lacking any trend across the three groups. For trending miRNAs, we assessed multimarker classification performance alone and in combination with apolipoprotein E ɛ4 allele (APOEɛ4) genotype and amyloid-ß42 to total tau ratio (Aß42:T-Tau). We identified predicted targets of trending miRNAs using pathway analysis. RESULTS: Five miRNAs showed a linear trend of decreasing median expression across the ordered diagnoses (control to MCI to AD). The trending miRNAs jointly predicted AD with area under the curve (AUC) of 0.770, and MCI with AUC of 0.705. Aß42:T-Tau alone predicted MCI with AUC of 0.758 and the AUC improved to 0.813 (p = 0.051) after adding the trending miRNAs. Multivariate correlation of the five trending miRNAs with Aß42:T-Tau was weak. CONCLUSION: Selected miRNAs combined with Aß42:T-Tau improved classification performance (relative to protein biomarkers alone) for MCI, despite a weak correlation with Aß42:T-Tau. Together these data suggest that that these miRNAs carry novel information relevant to AD, even at the MCI stage. Preliminary target prediction analysis suggests novel roles for these biomarkers.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , MicroRNAs/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4 , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Proteínas tau/líquido cefalorraquidiano
8.
Mol Neurobiol ; 56(7): 4988-4999, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30430409

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that regulate post-transcriptional gene expression. Recent studies have shown that human disease states correlate with measurable differences in the level of circulating miRNAs relative to healthy controls. Thus, there is great interest in developing clinical miRNA assays as diagnostic or prognostic biomarkers for diseases, and as surrogate measures for therapeutic outcomes. Our studies have focused on miRNAs in human cerebral spinal fluid (CSF) as biomarkers for central nervous system (CNS) diseases. Our objective here was to examine factors that may affect the outcome of quantitative PCR (qPCR) studies on CSF miRNAs, in order to guide planning and interpretation of future CSF miRNA TaqMan® low-density array (TLDA) studies. We obtained CSF from neurologically normal (control) donors and used TLDAs to measure miRNA expression. We examined sources of error in the TLDA outcomes due to (1) nonspecific amplification of products in total RNA, (2) variations in RNA isolations performed on different days, (3) miRNA primer probe efficiency, and (4) variations in individual TLDA cards. We also examined the utility of card-to-card TLDA corrections and use of an unchanged "reference standard" to remove batch processing effects in large-scale studies.


Assuntos
Líquido Cefalorraquidiano/química , MicroRNAs/análise , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/normas , Biomarcadores/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos
9.
J Alzheimers Dis ; 67(3): 875-891, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689565

RESUMO

We previously discovered microRNAs (miRNAs) in cerebrospinal fluid (CSF) that differentiate Alzheimer's disease (AD) patients from Controls. Here we examined the performance of 37 candidate AD miRNA biomarkers in a new and independent cohort of CSF from 47 AD patients and 71 Controls on custom TaqMan arrays. We employed a consensus ranking approach to provide an overall priority score for each miRNA, then used multimarker models to assess the relative contributions of the top-ranking miRNAs to differentiate AD from Controls. We assessed classification performance of the top-ranking miRNAs when combined with apolipoprotein E4 (APOE4) genotype status or CSF amyloid-ß42 (Aß42):total tau (T-tau) measures. We also assessed whether miRNAs that ranked higher as AD markers correlate with Mini-Mental State Examination (MMSE) scores. We show that of 37 miRNAs brought forth from the discovery study, 26 miRNAs remained viable as candidate biomarkers for AD in the validation study. We found that combinations of 6-7 miRNAs work better to identify AD than subsets of fewer miRNAs. Of 26 miRNAs that contribute most to the multimarker models, 14 have higher potential than the others to predict AD. Addition of these 14 miRNAs to APOE4 status or CSF Aß42:T-tau measures significantly improved classification performance for AD. We further show that individual miRNAs that ranked higher as AD markers correlate more strongly with changes in MMSE scores. Our studies validate that a set of CSF miRNAs serve as biomarkers for AD, and support their advancement toward development as biomarkers in the clinical setting.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , MicroRNAs/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , Fragmentos de Peptídeos/líquido cefalorraquidiano , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Proteínas tau/líquido cefalorraquidiano
10.
J Neurotrauma ; 24(6): 1068-77, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17600521

RESUMO

In vitro models of traumatic brain injury (TBI) are indispensable to explore the effects of mechanotrauma on neurological injury cascades and injury thresholds. This study characterizes a novel in vitro model of neural shear injury, which for the first time subjects organotypic cultures to inertia-driven shear strain. In this model, organotypic cultures preserved a high level of biological heterogeneity and spatial cytoarchitecture, while inertia-driven shear strain represented a tissue-level insult typical for closed head TBI in vivo. For neural injury simulation, organotypic hippocampal cultures derived from rats were inserted in an inertial loading module, which was subjected to impacts at five graded impact velocities ranging from 2 to 10 m/sec. The mechanical insult was quantified by measuring the transient shear deformation of the culture surface during impact with a high-speed camera. The resultant cell death was quantified with propidium iodide (PI) staining 24 hours following shear injury. Increasing impact velocities of 2, 4.6, 6.6, 8.1, and 10.4 m/sec caused graded peak shear elongation of 2.0 +/- 0.9%, 5.4 +/- 3.8%, 15.1 +/- 14.6%, 25.4 +/- 14.7%, and 56.3 +/- 51.3%, respectively. Cell death in response to impact velocities of 6.6 m/sec or less was not significantly higher than baseline cell death in sham cultures (4.4 +/- 1.5%). Higher impact velocities of 8.1 and 10.4 m/sec resulted in a significant increase in cell death to 19.9 +/- 12.9% and 36.7 +/- 14.2%, respectively (p < 0.001). The neural shear injury model delivered a gradable, defined mechanotrauma and thereby provides a novel tool for investigation of biological injury cascades in organotypic cultures.


Assuntos
Lesões Encefálicas/fisiopatologia , Hipocampo/lesões , Hipocampo/fisiopatologia , Modelos Neurológicos , Degeneração Neural/fisiopatologia , Animais , Animais Recém-Nascidos , Fenômenos Biomecânicos , Lesões Encefálicas/patologia , Morte Celular/fisiologia , Corantes , Hipocampo/patologia , Degeneração Neural/etiologia , Degeneração Neural/patologia , Técnicas de Cultura de Órgãos/métodos , Propídio , Ratos , Ratos Wistar , Resistência ao Cisalhamento , Estresse Mecânico
11.
J Alzheimers Dis ; 55(3): 1223-1233, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27814298

RESUMO

BACKGROUND: Currently available biomarkers of Alzheimer's disease (AD) include cerebrospinal fluid (CSF) protein analysis and amyloid PET imaging, each of which has limitations. The discovery of extracellular microRNAs (miRNAs) in CSF raises the possibility that miRNA may serve as novel biomarkers of AD. OBJECTIVE: Investigate miRNAs in CSF obtained from living donors as biomarkers for AD. METHODS: We profiled miRNAs in CSF from 50 AD patients and 49 controls using TaqMan® arrays. Replicate studies performed on a subset of 32 of the original CSF samples verified 20 high confidence miRNAs. Stringent data analysis using a four-step statistical selection process including log-rank and receiver operating characteristic (ROC) tests, followed by random forest tests, identified 16 additional miRNAs that discriminate AD from controls. Multimarker modeling evaluated linear combinations of these miRNAs via best-subsets logistic regression, and computed area under the ROC (AUC) curve ascertained classification performance. The influence of ApoE genotype on miRNA biomarker performance was also evaluated. RESULTS: We discovered 36 miRNAs that discriminate AD from control CSF. 20 of these retested in replicate studies verified differential expression between AD and controls. Stringent statistical analysis also identified these 20 miRNAs, and 16 additional miRNA candidates. Top-performing linear combinations of 3 and 4 miRNAs have AUC of 0.80-0.82. Addition of ApoE genotype to the model improved performance, i.e., AUC of 3 miRNA plus ApoE4 improves to 0.84. CONCLUSIONS: CSF miRNAs can discriminate AD from controls. Combining miRNAs improves sensitivity and specificity of biomarker performance, and adding ApoE genotype improves classification.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , MicroRNAs/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Amiloide/metabolismo , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Feminino , Genótipo , Humanos , Modelos Logísticos , Masculino , Entrevista Psiquiátrica Padronizada , MicroRNAs/genética , Tomografia por Emissão de Pósitrons , RNA Mensageiro/metabolismo , Curva ROC
13.
J Extracell Vesicles ; 6(1): 1317577, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717417

RESUMO

We examined the extracellular vesicle (EV) and RNA composition of pooled normal cerebrospinal fluid (CSF) samples and CSF from five major neurological disorders: Alzheimer's disease (AD), Parkinson's disease (PD), low-grade glioma (LGG), glioblastoma multiforme (GBM), and subarachnoid haemorrhage (SAH), representing neurodegenerative disease, cancer, and severe acute brain injury. We evaluated: (I) size and quantity of EVs by nanoparticle tracking analysis (NTA) and vesicle flow cytometry (VFC), (II) RNA yield and purity using four RNA isolation kits, (III) replication of RNA yields within and between laboratories, and (IV) composition of total and EV RNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNASeq). The CSF contained ~106 EVs/µL by NTA and VFC. Brain tumour and SAH CSF contained more EVs and RNA relative to normal, AD, and PD. RT-qPCR and RNASeq identified disease-related populations of microRNAs and messenger RNAs (mRNAs) relative to normal CSF, in both total and EV fractions. This work presents relevant measures selected to inform the design of subsequent replicative CSF studies. The range of neurological diseases highlights variations in total and EV RNA content due to disease or collection site, revealing critical considerations guiding the selection of appropriate approaches and controls for CSF studies.

14.
Front Mol Neurosci ; 9: 42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375429

RESUMO

Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury.

15.
Neuropharmacology ; 99: 500-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26256422

RESUMO

Epilepsy is a highly prevalent seizure disorder which tends to progress in severity and become refractory to treatment. Yet no therapy is proven to halt disease progression or to prevent the development of epilepsy. Because a high fat low carbohydrate ketogenic diet (KD) augments adenosine signaling in the brain and because adenosine not only suppresses seizures but also affects epileptogenesis, we hypothesized that a ketogenic diet might prevent epileptogenesis through similar mechanisms. Here, we tested this hypothesis in two independent rodent models of epileptogenesis. Using a pentylenetetrazole kindling paradigm in mice, we first show that a KD, but not a conventional antiepileptic drug (valproic acid), suppressed kindling-epileptogenesis. Importantly, after treatment reversal, increased seizure thresholds were maintained in those animals kindled in the presence of a KD, but not in those kindled in the presence of valproic acid. Next, we tested whether a KD can halt disease progression in a clinically relevant model of progressive epilepsy. Epileptic rats that developed spontaneous recurrent seizures after a pilocarpine-induced status epilepticus were treated with a KD or control diet (CD). Whereas seizures progressed in severity and frequency in the CD-fed animals, KD-fed animals showed a prolonged reduction of seizures, which persisted after diet reversal. KD-treatment was associated with increased adenosine and decreased DNA methylation, the latter being maintained after diet discontinuation. Our findings demonstrate that a KD prevented disease progression in two mechanistically different models of epilepsy, and suggest an epigenetic mechanism underlying the therapeutic effects.


Assuntos
Dieta Cetogênica , Hipocampo/fisiopatologia , Adenosina/metabolismo , Animais , Anticonvulsivantes/farmacologia , Metilação de DNA , Modelos Animais de Doenças , Progressão da Doença , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Pentilenotetrazol , Pilocarpina , Distribuição Aleatória , Ratos Wistar , Convulsões/dietoterapia , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Estado Epiléptico/dietoterapia , Estado Epiléptico/fisiopatologia , Ácido Valproico/farmacologia
16.
J Neurotrauma ; 21(1): 61-72, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14987466

RESUMO

We use a new in vitro model to examine the effect of mechanical deformation on neurons. We examined acute changes in cytosolic calcium concentrations ([Ca(2+)](i)) caused by a rapid stretch of cultured hippocampal neurons, using mechanical loading conditions that mimic brain deformations during trauma. We found that stretch-injury of neurons induces a strain-dependent increase in [Ca(2+)](i). Remarkably, the extent of this calcium response exceeded the levels initiated by chemical toxicity with NMDA (100 microM) or glutamate (5 mM) exposure. Propidium iodide labeling at 24 h following stretch showed neuronal death occurred only at the most severe level of mechanical injury. Although NMDA-induced toxicity could be inhibited in calcium free media or by treatment with MK-801, stretch-induced neuronal death was not similarly reduced with either treatment. Unexpectedly, reduction of the acute stretch-induced calcium transient with calcium-free media or MK-801 resulted in an increase in neuronal death at lower stretch levels. These data suggest that mechanical stretch can initiate calcium influx in hippocampal neurons, but substantially modulating the early calcium flux from the extracellular space or through the NMDA channel does not provide an effective means for improving neuronal survival.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Maleato de Dizocilpina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Hipocampo/metabolismo , Hipocampo/patologia , N-Metilaspartato/farmacologia , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
17.
Biorheology ; 40(1-3): 401-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12454433

RESUMO

In this study, we examine the response of cultured hippocampal neurons to mechanical stretch. To measure the immediate response, we measured the response of a calcium sensitive fluorescent dye (Fura-2AM) prior to and for five minutes following stretch. In separate experiments, we measured the viability of the cells using propidium iodide labeling at 24 hours following a single stretch. Results show that cytosolic calcium increases immediately following stretch to levels much higher than those associated with maximal chemical agonist (NMDA) stimulation. Moreover, the calcium response data indicate a loss in calcium regulation in the neurons at the most severe level of stretch. Finally, at the highest levels of stretch, the cell survivability decreases at 24 hrs following the stretch injury. These data show the association between loss in calcium regulation and early signs of neuronal cell death.


Assuntos
Cálcio/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Técnicas de Cultura de Células/métodos , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Citosol/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Ratos , Estresse Mecânico
18.
Invest Ophthalmol Vis Sci ; 55(2): 674-87, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24398096

RESUMO

PURPOSE: To compare in vivo retinal nerve fiber layer thickness (RNFLT) and axonal transport at 1 and 2 weeks after an 8-hour acute IOP elevation in rats. METHODS: Forty-seven adult male Brown Norway rats were used. Procedures were performed under anesthesia. The IOP was manometrically elevated to 50 mm Hg or held at 15 mm Hg (sham) for 8 hours unilaterally. The RNFLT was measured by spectral-domain optical coherence tomography. Anterograde and retrograde axonal transport was assessed from confocal scanning laser ophthalmoscopy imaging 24 hours after bilateral injections of 2 µL 1% cholera toxin B-subunit conjugated to AlexaFluor 488 into the vitreous or superior colliculi, respectively. Retinal ganglion cell (RGC) and microglial densities were determined using antibodies against Brn3a and Iba-1. RESULTS: The RNFLT in experimental eyes increased from baseline by 11% at 1 day (P < 0.001), peaked at 19% at 1 week (P < 0.0001), remained 11% thicker at 2 weeks (P < 0.001), recovered at 3 weeks (P > 0.05), and showed no sign of thinning at 6 weeks (P > 0.05). There was no disruption of anterograde transport at 1 week (superior colliculi fluorescence intensity, 75.3 ± 7.9 arbitrary units [AU] for the experimental eyes and 77.1 ± 6.7 AU for the control eyes) (P = 0.438) or 2 weeks (P = 0.188). There was no obstruction of retrograde transport at 1 week (RCG density, 1651 ± 153 per mm(2) for the experimental eyes and 1615 ± 135 per mm(2) for the control eyes) (P = 0.63) or 2 weeks (P = 0.25). There was no loss of Brn3a-positive RGC density at 6 weeks (P = 0.74) and no increase in microglial density (P = 0.92). CONCLUSIONS: Acute IOP elevation to 50 mm Hg for 8 hours does not cause a persisting axonal transport deficit at 1 or 2 weeks or a detectable RNFLT or RGC loss by 6 weeks but does lead to transient RNFL thickening that resolves by 3 weeks.


Assuntos
Transporte Axonal/fisiologia , Axônios/patologia , Pressão Intraocular , Hipertensão Ocular/fisiopatologia , Doenças do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/patologia , Doença Aguda , Animais , Contagem de Células , Corantes Fluorescentes/metabolismo , Fluorbenzenos/metabolismo , Masculino , Microglia/citologia , Oftalmoscopia , Ratos , Ratos Endogâmicos BN , Neurônios Retinianos/fisiologia , Fatores de Tempo , Tomografia de Coerência Óptica , Tonometria Ocular
19.
Neurochem Int ; 77: 24-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24969725

RESUMO

There are important sex differences in the risk and outcome of conditions and diseases between males and females. For example, stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage following an ischemic event compared to females. Studies suggest that the difference in male and female susceptibility to ischemia may be triggered by innate variations in gene regulation and protein expression between the sexes that are independent of post-natal exposure to sex hormones. We have shown that there are differences in microRNA (miRNA) expression in adult male and female brain following focal cerebral ischemia in mouse cortex. Herein we examine a role for differential expression of miRNAs during development in male and female rat cortex as potential effectors of the phenotype that leads to sex differences to ischemia. Expression studies in male and female cortices isolated from postnatal day 0 (P0), postnatal day 7 (P7), and adult rats using TaqMan Low Density miRNA arrays and NanoString nCounter analysis revealed differential miRNA levels between males and females at each developmental stage. We focused on the miR-200 family of miRNAs that showed higher levels in females at P0, but higher levels in males at P7 that persisted into adulthood, and validated the expression of miR-200a, miR-200b, and miR-429 by individual qRT-PCR as these are clustered on chromosome 5 and may be transcriptionally co-regulated. Prediction analysis of the miR-200 miRNAs revealed that genes within the Gonadotropin releasing hormone receptor pathway are the most heavily targeted. These studies support that developmental changes in miRNA expression may influence phenotypes in adult brain that underlie sexually dimorphic responses to disease, including ischemia.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , MicroRNAs/biossíntese , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Marcação de Genes , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Acidente Vascular Cerebral/genética
20.
Front Mol Neurosci ; 7: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574964

RESUMO

Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA) expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa