Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(13): 9347-9355, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520392

RESUMO

Tuning the photophysical properties of iron-based transition-metal complexes is crucial for their employment as photosensitizers in solar energy conversion. For the optimization of these new complexes, a detailed understanding of the excited-state deactivation paths is necessary. Here, we report femtosecond transient mid-IR spectroscopy data on a recently developed octahedral ligand-field enhancing [Fe(dqp)2]2+ (C1) complex with dqp = 2,6-diquinolylpyridine and prototypical [Fe(bpy)3]2+ (C0). By combining mid-IR spectroscopy with quantum chemical DFT calculations, we propose a method for disentangling the 5Q1 and 3T1 multiplicities of the long-lived metal-centered (MC) states, applicable to a variety of metal-organic iron complexes. Our results for C0 align well with the established assignment toward the 5Q1, validating our approach. For C1, we find that deactivation of the initially excited metal-to-ligand charge-transfer state leads to a population of a long-lived MC 5Q1 state. Analysis of transient changes in the mid-IR shows an ultrafast sub 200 fs rearrangement of ligand geometry for both complexes, accompanying the MLCT → MC deactivation. This confirms that the flexibility in the ligand sphere supports the stabilization of high spin states and plays a crucial role in the MLCT lifetime of metal-organic iron complexes.

2.
J Phys Chem A ; 124(39): 7857-7868, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32962348

RESUMO

Charge carrier multiplication via singlet fission into two triplet states has the potential to increase efficiencies of photovoltaics by one-third due to the reduction of thermalization losses. In the present work, we investigate tetraazaperopyrenes, a class of N-heteropolycyles, as suitable singlet fission candidates. Using a combined experimental and theoretical approach, fundamentally different mechanisms for triplet formation in solution and thin film are identified. In solution, an ultrafast intersystem crossing process is observed, which is accelerated for heavier halide substituents not only due to enhanced spin-orbit coupling but also due to the energy tuning between the S1 and T2 states. In thin films, a correlated triplet pair is formed coherently upon photoexcitation. Subsequently, an excimer formation is observed, which competes with the electronic decorrelation of the triplet pair. The comparison with peropyrene shows that aza-substitutions within the aromatic core can be a powerful strategy for tuning the energy levels of the states important to singlet fission.

3.
J Am Chem Soc ; 141(22): 8834-8845, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31063690

RESUMO

Quantum chemistry and time-resolved spectroscopy are applied to rationalize how singlet fission (SF) is affected by systematic chemical modifications introduced into phenazinothiadiazoles (PTD). Substitution of the terminal aromatic ring of TIPS-tetracene by a thiadiazole group leads to a considerable change in the relative energies of its S1 and T1 states. Thus, in contrast to TIPS-tetracene, SF becomes exothermic for various PTD derivatives, which show S1-2T1 energy differences as high as 0.15 eV. This enables SF in PTD as corroborated by femtosecond transient absorption spectroscopy and TD-DFT calculations. The latter report T-T spectra consistent with thin film UV-vis femtosecond transient absorption of PTDs at long delays. TD-DFT calculations also show that the S1-T1 energy gap can be rationally tuned by introducing N atoms into the aromatic scaffold and by the halogenation of one side ring of the PTD. In addition, the specific S1-to-1(T1T1) electronic coupling depends on the crystal morphology and the electronic properties simultaneously. Thus, both of them govern the strength and the interplay between direct and superexchange couplings, which in the most favorable cases accelerate SF to rate constants beyond (100 fs)-1. Remarkably, direct coupling was found to contribute considerably to the total effective coupling and even to dominate it for some PTDs investigated here. A quantum yield of 200% is obtained on the early picosecond time scale for all compounds studied here, which is reduced to 100% due to triplet-triplet annihilation after a few nanoseconds.

4.
J Phys Chem A ; 122(38): 7587-7597, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30183298

RESUMO

The light-activated cleavage of cyclobutane-based systems via [2 + 2] cycloreversions, such as thymine and coumarin dimers, is an important but still poorly understood ultrafast photochemical reaction. Systems displaying reversible cycloreversion have found various uses in cross-linked polymers, enhancing gas adsorption affinities in inorganics, and light-activated medical therapies. We report the identification of a heterogeneous mode of cycloreversion for a rarely examined coumarin analogue system. Quinolinone monomers and dimers were probed using ultraviolet pumped, transient absorption spectroscopy and demonstrated radically different photophysical properties than coumarins. Monomers displayed enhanced intersystem crossing at almost 1:1 versus the combined nonradiative and radiative singlet decay, while the dimers underwent cycloreversion to a one excited-one ground state monomer photoproduct pair. The change in both systems was directly linked to the lactame group in the quinolinone motif. This discovery highlights the dramatic effects that small chemical changes can have on photoreaction pathways and opens up a new means to produce and develop more efficient cycloaddition-cycloreversion systems.

5.
Chemphyschem ; 12(10): 1860-71, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21710522

RESUMO

Photoisomerization around a central fulvene-type double bond is known to proceed through a conical intersection at the perpendicular geometry. The process is studied with an indenylidene-dihydropyridine model compound, allowing the use of visible excitation pulses. Transient absorption shows that 1) stimulated emission shifts to the red and loses oscillator strength on a 50 fs timescale, and 2) bleach recovery is highly nonexponential and not affected by solvent viscosity or methyl substitution at the dihydropyridine ring. Quantum-chemical calculations are used to explain point 1 as a result of initial elongation of the central C=C bond with mixing of S(2) and S(1) states. From point 2 it is concluded that internal conversion of S(1)→S(0) does not require torsional motion to the fully perpendicular state. The S(1) population appears to encounter a sink on the torsional coordinate before the conical intersection is reached. Rate equations cannot model the observed ground-state recovery adequately. Instead the dynamics are best described with a strongly damped oscillatory contribution, which could indicate coherent S(1)-S(0) population transfer.

6.
J Phys Chem B ; 117(45): 14065-78, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24083378

RESUMO

Strong-acid dissociation was studied in alcohols. Optical excitation of the cationic photoacid N-methyl-6-hydroxyquinolinium triggers proton transfer to the solvent, which was probed by spectral reconstruction of picosecond fluorescence traces. The process fulfills the classical Eigen-Weller mechanism in two stages: (a) solvent-controlled reversible dissociation inside the solvent shell and (b) barrierless splitting of the encounter complex. This can be appreciated only when fluorescence band integrals are used to monitor the time evolution of the reactant and product concentrations. Band integrals are insensitive to solvent dynamics and report relative concentrations directly. This was demonstrated by first measuring the fluorescence decay of the conjugate base across the full emission band, independently of the proton-transfer reaction. Multiexponential decay curves at single wavelengths result from a dynamic red shift of fluorescence in the course of solvent relaxation, whereas clean single exponential decays are obtained if the band integral is monitored instead. The extent of the shift is consistent with previously reported femtosecond transient absorption measurements, continuum theory of solvatochromism, and molecular properties derived from quantum chemical calculations. In turn, band integrals show clean biexponential decay of the photoacid and triexponential evolution of the conjugate base in the course of the proton transfer to solvent reaction. The dissociation step follows the slowest stage of solvation, which was measured here independently by picosecond fluorescence spectroscopy in five aliphatic alcohols. Also, the rate constant of the encounter-complex splitting stage is compatible with proton diffusion. Thus, for this photoacid, both stages reach the highest possible rates: solvation and diffusion control. Under these conditions, the concentration of the encounter complex is substantial during the earliest nanosecond.


Assuntos
Ácidos/química , Prótons , Solventes/química , Difusão , Teoria Quântica , Espectrometria de Fluorescência , Fatores de Tempo
7.
J Phys Chem A ; 109(45): 10189-98, 2005 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16833311

RESUMO

Ground-state tautomerism and excited-state proton-transfer processes of 2-(6'-hydroxy-2'-pyridyl)benzimidazolium in H2O and D2O have been studied by means of UV-vis absorption and fluorescence spectroscopy in both steady-state and time-resolved modes. In the ground state, this compound shows a tautomeric equilibrium between the lactim cation, protonated at the benzimidazole N3, and its lactam tautomer, obtained by proton translocation from the hydroxyl group to the pyridine nitrogen. Direct excitation of the lactam tautomer leads to its own fluorescence emission, while as a result of the increase of acidity of the OH group and basicity at the pyridine N upon excitation, the lactim species undergoes a proton translocation from the hydroxyl group to the nitrogen, favoring the lactam structure in the excited state. No fluorescence emission from the initially excited lactim species was detected due to the ultrafast rate of the excited-state proton-transfer processes. The lactim-lactam phototaumerization process takes place via two competitive excited-state proton-transfer routes: a one-step water-assisted proton translocation (probably a double proton transfer) and a two-step pathway which involves first the dissociation of the lactim cation to form an emissive intermediate zwitterionic species and then the acid-catalyzed protonation at the pyridine nitrogen to give rise to the lactam tautomer.


Assuntos
Lactamas/química , Piridinas/química , Água/química , Cátions/química , Óxido de Deutério/química , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Fotoquímica , Prótons , Sensibilidade e Especificidade , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa