Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 337, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664617

RESUMO

BACKGROUND: Endophytes mediate the interactions between plants and other microorganisms, and the functional aspects of interactions between endophytes and their host that support plant-growth promotion and tolerance to stresses signify the ecological relevance of the endosphere microbiome. In this work, we studied the bacterial and fungal endophytic communities of olive tree (Olea europaea L.) asymptomatic or low symptomatic genotypes sampled in groves heavily compromised by Xylella fastidiosa subsp. pauca, aiming to characterize microbiota in genotypes displaying differential response to the pathogen. RESULTS: The relationships between bacterial and fungal genera were analyzed both separately and together, in order to investigate the intricate correlations between the identified Operational Taxonomic Units (OTUs). Results suggested a dominant role of the fungal endophytic community compared to the bacterial one, and highlighted specific microbial taxa only associated with asymptomatic or low symptomatic genotypes. In addition, they indicated the occurrence of well-adapted genetic resources surviving after years of pathogen pressure in association with microorganisms such as Burkholderia, Quambalaria, Phaffia and Rhodotorula. CONCLUSIONS: This is the first study to overview endophytic communities associated with several putatively resistant olive genotypes in areas under high X. fastidiosa inoculum pressure. Identifying these negatively correlated genera can offer valuable insights into the potential antagonistic microbial resources and their possible development as biocontrol agents.


Assuntos
Endófitos , Genótipo , Olea , Doenças das Plantas , Xylella , Olea/microbiologia , Xylella/fisiologia , Xylella/genética , Endófitos/fisiologia , Endófitos/genética , Doenças das Plantas/microbiologia , Microbiota , Bactérias/genética , Bactérias/classificação , Fungos/fisiologia , Fungos/genética
2.
Plant Dis ; 106(10): 2625-2630, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075086

RESUMO

Almond leaf scorch is a disease caused by Xylella fastidiosa, which is increasingly widespread globally in the main almond cultivation areas. Previously confined to America, in the last decade this disease has been reported in Iran and southern Europe. In this comparative study, the resistance to X. fastidiosa subsp. multiplex of 13 almond cultivars (Mamaei, Non-Pareil, Sefied, Rabie, Ferragnes, Shahrood21, Thompson, Merced, Marcona, Frudeul, Kapariel, Princess, and Tuono) grafted onto seedlings of Talkhe was evaluated in controlled conditions. Plants were artificially inoculated and maintained in greenhouse conditions. Approximately 3 months after inoculation, three times at 3-week intervals, disease incidence, disease severity, and disease index were determined based on scaling, and bacterial populations were estimated. The effect of winter survival of bacteria in outdoor potted seedlings was also investigated in all almond cultivars. Findings showed a great degree of variability in response to X. fastidiosa among cultivars considering symptom development and severity, as well as bacterial titer. Thompson and Rabie cultivars scored the best results from both a symptomatological and infectious point of view, indicating resistance against the pathogen compared with other tolerant cultivars (e.g., Ferragnes, Tuono, and Kapariel), thanks to the development of mild symptoms. Mamaei, Non-Pareil, and Sefied scored worst, suggesting a susceptible behavior when infected by X. fastidiosa. Given that the pathogen was not detected by culturing and PCR during the following summer, bacterial population in potted seedlings was reduced significantly by overwintering in outdoor conditions regardless of cultivar susceptibility. This suggests that cold treatment can be used as a preventive treatment to manage nursery almond seedlings.


Assuntos
Prunus dulcis , Raiva , Xylella , Doenças das Plantas/microbiologia , Xylella/fisiologia
3.
Sensors (Basel) ; 21(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803614

RESUMO

Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, "early detection" in combination with "fast, accurate, and cheap" diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of "preventive actions", making the difference in fighting against phytopathogens, all over the world.


Assuntos
Agricultura , Internet das Coisas , Humanos , Nanotecnologia , Doenças das Plantas , Plantas
4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298963

RESUMO

Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix-loop-helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs.


Assuntos
Cádmio/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Proteínas de Plantas/biossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Triticum/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Brotos de Planta/genética , Triticum/genética
5.
Phytopathology ; 109(2): 318-325, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30566025

RESUMO

Monitoring Xylella fastidiosa is critical for eradicating or at least containing this harmful pathogen. New low-cost and rapid methods for early detection capability are very much needed. Metabolomics may play a key role in diagnosis; in fact, mobile metabolites could avoid errors in sampling due to erratically distributed pathogens. Of the various different mobile signals, we studied dicarboxylic azelaic acid (AzA) which is a key molecule for biotic stress plant response but has not yet been associated with pathogens in olive trees. We found that infected Olea europaea L. plants of cultivars Cellina di Nardò (susceptible to X. fastidiosa) and Leccino (resistant to the pathogen) showed an increase in AzA accumulation in leaf petioles and in sprigs by approximately seven- and sixfold, respectively, compared with plants negative to X. fastidiosa or affected by other pathogens. No statistically significant variation was found between the X. fastidiosa population level and the amount of AzA in either of the plant tissues, suggesting that AzA accumulation was almost independent of the amount of pathogen in the sample. Furthermore, the association of AzA with X. fastidiosa seemed to be reliable for samples judged as potentially false-negative by quantitative polymerase chain reaction (cycle threshold [Ct] > 33), considering both the absolute value of AzA concentration and the values normalized on negative samples, which diverged significantly from control plants. The accumulation of AzA in infected plants was partially supported by the differential expression of two genes (named OeLTP1 and OeLTP2) encoding lipid transport proteins (LTPs), which shared a specific domain with the LTPs involved in AzA activity in systemic acquired resistance in other plant species. The expression level of OeLTP1 and OeLTP2 in petiole samples showed significant upregulation in samples positive to X. fastidiosa of both cultivars, with higher expression levels in positive samples of Cellina di Nardò compared with Leccino, whereas the two transcripts had a low expression level (Ct > 40) in negative samples of the susceptible cultivar. Although the results derived from the quantification of AzA cannot confirm the presence of the erratically distributed X. fastidiosa, which can be definitively assessed by traditional methods, we believe they represent a fast and cheap screening method for large-scale monitoring.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Olea , Xylella , Ácidos Dicarboxílicos/química , Doenças das Plantas/microbiologia , Folhas de Planta/química
6.
Int J Mol Sci ; 20(23)2019 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-31771264

RESUMO

Cadmium (Cd) and lead (Pb) are two toxic heavy metals (HMs) whose presence in soil is generally low. However, industrial and agricultural activities in recent years have significantly raised their levels, causing progressive accumulations in plant edible tissues, and stimulating research in this field. Studies on toxic metals are commonly focused on a single metal, but toxic metals occur simultaneously. The understanding of the mechanisms of interaction between HMs during uptake is important to design agronomic or genetic strategies to limit contamination of crops. To study the single and combined effect of Cd and Pb on durum wheat, a hydroponic experiment was established to examine the accumulation of the two HMs. Moreover, the molecular mechanisms activated in the roots were investigated paying attention to transcription factors (bHLH family), heavy metal transporters and genes involved in the biosynthesis of metal chelators (nicotianamine and mugineic acid). Cd and Pb are accumulated following different molecular strategies by durum wheat plants, even if the two metals interact with each other influencing their respective uptake and translocation. Finally, we demonstrated that some genes (bHLH 29, YSL2, ZIF1, ZIFL1, ZIFL2, NAS2 and NAAT) were induced in the durum wheat roots only in response to Cd.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Triticum/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Triticum/metabolismo
7.
Molecules ; 24(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137706

RESUMO

Olive leaf extracts are of special interest due to their proven therapeutic effects. However, they are still considered a by-product of the table olive and the oil industries. In order to learn possible ways of exploiting this waste for health purposes, we investigated the phytochemical profiles and antioxidant activities in the leaves of 15 Italian Olea europaea L. cultivars grown in the same pedoclimatic conditions. The phenolic profiles and amounts of their seven representative compounds were analyzed using HPLC ESI/MS-TOF. The antioxidant activities were determined using three different antioxidant assays (DPPH, ORAC, and superoxide anion scavenging assay). Wide ranges of total phenolic content (11.39-48.62 g GAE kg-1 dry weight) and antioxidant activities (DPPH values: 8.67-29.89 µmol TE mg-1 dry weight, ORAC values: 0.81-4.25 µmol TE mg-1 dry weight, superoxide anion scavenging activity values: 27.66-48.92 µmol TE mg-1 dry weight) were found in the cultivars. In particular, the cultivars Itrana, Apollo, and Maurino, showed a high amount of total phenols and antioxidant activity, and therefore represent a suitable natural source of biological compounds for use in terms of health benefits.


Assuntos
Antioxidantes/análise , Olea/química , Compostos Fitoquímicos/análise , Folhas de Planta/química , Calibragem , Limite de Detecção , Fenóis/análise , Extratos Vegetais/química
8.
BMC Plant Biol ; 18(1): 238, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326849

RESUMO

BACKGROUND: Among cereals, durum wheat (Triticum turgidum L. subsp. durum) accumulates cadmium (Cd) at higher concentration if grown in Cd-polluted soils. Since cadmium accumulation is a risk for human health, the international trade organizations have limited the acceptable concentration of Cd in edible crops. Therefore, durum wheat cultivars accumulating low cadmium in grains should be preferred by farmers and consumers. To identify the response of durum wheat to the presence of Cd, the transcriptomes of roots and shoots of Creso and Svevo cultivars were sequenced after a 50-day exposure to 0.5 µM Cd in hydroponic solution. RESULTS: No phytotoxic effects or biomass reduction was observed in Creso and Svevo plants at this Cd concentration. Despite this null effect, cadmium was accumulated in root tissues, in shoots and in grains suggesting a good cadmium translocation rate among tissues. The mRNA sequencing revealed a general transcriptome rearrangement after Cd treatment and more than 7000 genes were found differentially expressed in root and shoot tissues. Among these, the up-regulated genes in roots showed a clear correlation with cadmium uptake and detoxification. In particular, about three hundred genes were commonly up-regulated in Creso and Svevo roots suggesting a well defined molecular strategy characterized by the transcriptomic activation of several transcription factors mainly belonging to bHLH and WRKY families. bHLHs are probably the activators of the strong up-regulation of three NAS genes, responsible for the synthesis of the phytosiderophore nicotianamine (NA). Moreover, we found the overall up-regulation of the methionine salvage pathway that is tightly connected with NA synthesis and supply the S-adenosyl methionine necessary for NA biosynthesis. Finally, several vacuolar NA chelating heavy metal transporters were vigorously activated. CONCLUSIONS: In conclusion, the exposure of durum wheat to cadmium activates in roots a complex gene network involved in cadmium translocation and detoxification from heavy metals. These findings are confident with a role of nicotianamine and methionine salvage pathway in the accumulation of cadmium in durum wheat.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Triticum/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Biomassa , Cádmio/metabolismo , Grão Comestível , Hidroponia , Metionina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Triticum/efeitos dos fármacos , Triticum/fisiologia
9.
Plants (Basel) ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475423

RESUMO

The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.

10.
Foods ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38790827

RESUMO

In recent decades, the food production chain has undergone transformations that have profoundly affected the way food is supplied, causing changes in the quality of the final products. Moreover, biodiversity is seriously threatened worldwide, and the valorization of local germplasm is a priority goal for most sectorial policies in Europe and elsewhere. Southern Italy and the Mediterranean basin present a vast heritage of fruit tree cultivars that is gradually being lost. Through this work, we aim to valorize a well-adapted local pear cultivar named Petrucina from the Salento area (southeastern Italy, Apulia region), which has never been studied before in detail. With this aim, the nutritional and nutraceutical features of pear flesh were characterized and compared with a reference pear cultivar that is widespread and well-known in Europe (cv. 'Conference'). Petrucina fruits have shown a peculiar aromatic compound profile, and a content of up to 398.3, 30.9, and 4.7 mg/100 g FW of malic acid, citric acid, and ascorbic acid, respectively, much higher than that of Conference fruits. Additionally, Petrucina flesh presents a more than triple total phenolic content and an antioxidant activity more than double that of Conference, making Petrucina a true functional food that deserves wide appreciation.

11.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672856

RESUMO

Ochratoxin A (OTA) is a toxic mycotoxin produced by some mold species from genera Penicillium and Aspergillus. OTA has been detected in cereals, cereal-derived products, dried fruits, wine, grape juice, beer, tea, coffee, cocoa, nuts, spices, licorice, processed meat, cheese, and other foods. OTA can induce a wide range of health effects attributable to its toxicological properties, including teratogenicity, immunotoxicity, carcinogenicity, genotoxicity, neurotoxicity, and hepatotoxicity. OTA is not only toxic to humans but also harmful to livestock like cows, goats, and poultry. This is why the European Union and various countries regulate the maximum permitted levels of OTA in foods. This review intends to summarize all the main aspects concerning OTA, starting from the chemical structure and fungi that produce it, its presence in food, its toxicity, and methods of analysis, as well as control strategies, including both fungal development and methods of inactivation of the molecule. Finally, the review provides some ideas for future approaches aimed at reducing the OTA levels in foods.

12.
Plants (Basel) ; 13(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611461

RESUMO

Olive quick decline syndrome (OQDS) is a devastating plant disease caused by the bacterium Xylella fastidiosa (Xf). Exploratory missions in the Salento area led to the identification of putatively Xf-resistant olive trees (putatively resistant plants, PRPs) which were pauci-symptomatic or asymptomatic infected plants belonging to different genetic clusters in orchards severely affected by OQDS. To investigate the defense strategies employed by these PRPs to contrast Xf infection, the PRPs were analyzed for the anatomy and histology of xylem vessels, patterns of Xf distribution in host tissues (by the fluorescent in situ hybridization technique-FISH) and the presence of secondary metabolites in stems. The xylem vessels of the PRPs have an average diameter significantly lower than that of susceptible plants for each annual tree ring studied. The histochemical staining of xylem vessels highlighted an increase in the lignin in the parenchyma cells of the medullary rays of the wood. The 3D images obtained from FISH-LSM (laser scanning microscope) revealed that, in the PRPs, Xf cells mostly appeared as individual cells or as small aggregates; in addition, these bacterial cells looked to be incorporated in the autofluorescence signal of gels and phenolic compounds regardless of hosts' genotypes. In fact, the metabolomic data from asymptomatic PRP stems showed a significant increase in compounds like salicylic acid, known as a signal molecule which mediates host responses upon pathogen infection, and luteolin, a naturally derived flavonoid compound with antibacterial properties and with well-known anti-biofilm effects. Findings indicate that the xylem vessel geometry together with structural and chemical defenses are among the mechanisms operating to control Xf infection and may represent a common resistance trait among different olive genotypes.

13.
Pathogens ; 12(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375515

RESUMO

The maintenance of an intact water column in the xylem lumen several meters above the ground is essential for woody plant viability. In fact, abiotic and biotic factors can lead to the formation of emboli in the xylem, interrupting sap flow and causing consequences on the health status of the plant. Anyway, the tendency of plants to develop emboli depends on the intrinsic features of the xylem, while the cyto-histological structure of the xylem plays a role in resistance to vascular pathogens, as in the case of the pathogenic bacterium Xylella fastidiosa. Analysis of the scientific literature suggests that on grapevine and olive, some xylem features can determine plant tolerance to vascular pathogens. However, the same trend was not reported in citrus, indicating that X. fastidiosa interactions with host plants differ by species. Unfortunately, studies in this area are still limited, with few explaining inter-cultivar insights. Thus, in a global context seriously threatened by X. fastidiosa, a deeper understanding of the relationship between the physical and mechanical characteristics of the xylem and resistance to stresses can be useful for selecting cultivars that may be more resistant to environmental changes, such as drought and vascular pathogens, as a way to preserve agricultural productions and ecosystems.

14.
Biosensors (Basel) ; 13(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36831963

RESUMO

In this work, we report the parametric optimization of surface acoustic wave (SAW) delay lines on Lithium niobate for environmental monitoring applications. First, we show that the device performance can be improved by acting opportunely on geometrical design parameters of the interdigital transducers such as the number of finger pairs, the finger overlap length and the distance between the emitter and the receiver. Then, the best-performing configuration is employed to realize SAW sensors. As aerosol particulate matter (PM) is a major threat, we first demonstrate a capability for the detection of polystyrene particles simulating nanoparticulates/nanoplastics, and achieve a limit of detection (LOD) of 0.3 ng, beyond the present state-of-the-art. Next, the SAW sensors were used for the first time to implement diagnostic tools able to detect Grapevine leafroll-associated virus 3 (GLRaV-3), one of the most widespread viruses in wine-growing areas, outperforming electrochemical impedance sensors thanks to a five-times better LOD. These two proofs of concept demonstrate the ability of miniaturized SAW sensors for carrying out on-field monitoring campaigns and their potential to replace the presently used heavy and expensive laboratory instrumentation.


Assuntos
Microplásticos , Som
15.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514309

RESUMO

"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.

16.
Microorganisms ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838405

RESUMO

This study focuses on interacting with insects and their ectosymbiont (lato sensu) microorganisms for environmentally safe plant production and protection. Some cases help compare ectosymbiont microorganisms that are insect-borne, -driven, or -spread relevant to endosymbionts' behaviour. Ectosymbiotic bacteria can interact with insects by allowing them to improve the value of their pabula. In addition, some bacteria are essential for creating ecological niches that can host the development of pests. Insect-borne plant pathogens include bacteria, viruses, and fungi. These pathogens interact with their vectors to enhance reciprocal fitness. Knowing vector-phoront interaction could considerably increase chances for outbreak management, notably when sustained by quarantine vector ectosymbiont pathogens, such as the actual Xylella fastidiosa Mediterranean invasion episode. Insect pathogenic viruses have a close evolutionary relationship with their hosts, also being highly specific and obligate parasites. Sixteen virus families have been reported to infect insects and may be involved in the biological control of specific pests, including some economic weevils. Insects and fungi are among the most widespread organisms in nature and interact with each other, establishing symbiotic relationships ranging from mutualism to antagonism. The associations can influence the extent to which interacting organisms can exert their effects on plants and the proper management practices. Sustainable pest management also relies on entomopathogenic fungi; research on these species starts from their isolation from insect carcasses, followed by identification using conventional light or electron microscopy techniques. Thanks to the development of omics sciences, it is possible to identify entomopathogenic fungi with evolutionary histories that are less-shared with the target insect and can be proposed as pest antagonists. Many interesting omics can help detect the presence of entomopathogens in different natural matrices, such as soil or plants. The same techniques will help localize ectosymbionts, localization of recesses, or specialized morphological adaptation, greatly supporting the robust interpretation of the symbiont role. The manipulation and modulation of ectosymbionts could be a more promising way to counteract pests and borne pathogens, mitigating the impact of formulates and reducing food insecurity due to the lesser impact of direct damage and diseases. The promise has a preventive intent for more manageable and broader implications for pests, comparing what we can obtain using simpler, less-specific techniques and a less comprehensive approach to Integrated Pest Management (IPM).

17.
Biology (Basel) ; 11(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053110

RESUMO

Xylella fastidiosa (Xf) subsp. pauca "De Donno" is the etiological agent of "Olive Quick Decline Syndrome" (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (-27.0% and -25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (-20.1%) and combined stresses (-11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.

18.
Front Microbiol ; 13: 864434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651491

RESUMO

Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.

19.
Plants (Basel) ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501344

RESUMO

While studying aromas produced by the edible flowers of Tulbaghia violacea, we noticed a different production of (Z)-3-Hexenyl acetate (a green-leaf volatile, GLV) by purple (var. 'Violacea') and white (var. 'Alba') flowers. The white Tulbaghia flowers constantly emits (Z)-3-Hexenyl acetate, which is instead produced in a lower amount by the purple-flowered variety. Thus, we moved to analyze the production of (Z)-3-Hexenyl acetate by whole plants of the two varieties by keeping them confined under a glass bell for 5 h together with a SPME (Solid Phase Micro Extraction) fiber. Results show that six main volatile compounds are emitted by T. violacea plants: (Z)-3-Hexenyl acetate, benzyl alcohol, nonanal, decanal, (Z)-3-Hexenyl-α-methylbutyrate, and one unknown compound. By cutting at half-height of the leaves, the (Z)-3-Hexenyl acetate is emitted in high quantities from both varieties, while the production of (Z)-3-Hexenyl-α-methylbutyrate increases. (Z)-3-Hexenyl acetate is a GLV capable of stimulating plant defenses, attracting herbivores and their natural enemies, and it is also involved in plant-to-plant communication and defense priming. Thus, T. violacea could represent a useful model for the study of GLVs production and a 'signal' plant capable of stimulating natural defenses in the neighboring plants.

20.
Front Plant Sci ; 13: 936020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812940

RESUMO

Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] can accumulate a high level of Cd in grains with a significant variability depending on cultivars. Understanding how this toxic element is distributed in cereal tissues and grains is essential to improve the nutritional quality of cereal-based products. The main objective of this work was to investigate roots of durum wheat plants (cv. Iride) exposed to different Cd concentrations (0.5 and 5.0 µM) to identify the mechanisms involved in Cd management. Results showed that the root morphology was altered by Cd treatment both at macroscopic (increased number of tips and primary root length) and ultrastructural levels (cell membrane system damaged, cell walls thickened and enriched in suberin). On the other side, Cd was localized in vesicles and in cell walls, and the metal colocalized with the phytosiderophore nicotianamine (NA). Overall, data suggest that Cd is chelated by NA and then compartmentalized, through vesicular trafficking, in the root thickened walls reducing Cd translocation to the aerial organs of the plant.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa