Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823483

RESUMO

Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.


Assuntos
Intestinos/patologia , Precondicionamento Isquêmico , Neutrófilos/metabolismo , Fosfoproteínas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Proteômica , Traumatismo por Reperfusão/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosfoproteínas/química , Fosforilação , Domínios Proteicos , Proteoma/metabolismo , Ratos , Traumatismo por Reperfusão/patologia , Transdução de Sinais
2.
Braz J Microbiol ; 53(3): 1159-1165, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35312990

RESUMO

The effective food processing technology is a key step in eliminating human noroviruses in foods mainly due to their stability in diverse environmental conditions. The aim of this study was to evaluate the effect of rising temperatures for inactivation of norovirus genogroup (G) II and murine norovirus 1 in samples of tomato sauce (72-74 °C for 1 min) and ground meat (100 °C for 30 min). Spiking experiments were carried out in triplicate using TRIzol® reagent method associated with quantitative polymerase chain reaction (qPCR) TaqMan™ system combined with previous free RNA digestion. Success rate and efficiency recoveries of both viruses as well limit of detection of a method for each matrix were also conducted. The heat treatment applied here proved to be efficient to reduce the burden of norovirus GII in a range of 1-4 log10 genomic copies per gram (percentage ranging from 0.45 to 104.54%) in both matrices. The experiments in this study showed that the results of norovirus GII and murine norovirus 1 in tomato sauce and ground meat tested during thermal treatments cannot be generalized to other food matrices, since there may be food-specific protective effects, as the presence of different components, that can interfere in virus inactivation. Studies using different food matrices reinforce the importance to investigate viruses' inactivation thermal processes in foods due to the resistance of these viruses to adverse conditions, contributing to food security in food virology.


Assuntos
Norovirus , Animais , Manipulação de Alimentos , Genótipo , Temperatura Alta , Humanos , Carne , Camundongos , Norovirus/genética , Inativação de Vírus
3.
PLoS One ; 17(1): e0262600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030224

RESUMO

In patients with severe forms of COVID-19, thromboelastometry has been reported to display a hypercoagulant pattern. However, an algorithm to differentiate severe COVID-19 patients from nonsevere patients and healthy controls based on thromboelastometry parameters has not been developed. Forty-one patients over 18 years of age with positive qRT-PCR for SARS-CoV-2 were classified according to the severity of the disease: nonsevere (NS, n = 20) or severe (S, n = 21). A healthy control (HC, n = 9) group was also examined. Blood samples from all participants were tested by extrinsic (EXTEM), intrinsic (INTEM), non-activated (NATEM) and functional assessment of fibrinogen (FIBTEM) assays of thromboelastometry. The thrombodynamic potential index (TPI) was also calculated. Severe COVID-19 patients exhibited a thromboelastometry profile with clear hypercoagulability, which was significantly different from the NS and HC groups. Nonsevere COVID-19 cases showed a trend to thrombotic pole. The NATEM test suggested that nonsevere and severe COVID-19 patients presented endogenous coagulation activation (reduced clotting time and clot formation time). TPI data were significantly different between the NS and S groups. The maximum clot firmness profile obtained by FIBTEM showed moderate/elevated accuracy to differentiate severe patients from NS and HC. A decision tree algorithm based on the FIBTEM-MCF profile was proposed to differentiate S from HC and NS. Thromboelastometric parameters are a useful tool to differentiate the coagulation profile of nonsevere and severe COVID-19 patients for therapeutic intervention purposes.


Assuntos
Coagulação Sanguínea , COVID-19/sangue , Tromboelastografia , Trombofilia/sangue , Adulto , Idoso , Algoritmos , COVID-19/complicações , COVID-19/diagnóstico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Trombofilia/diagnóstico , Trombofilia/etiologia , Adulto Jovem
4.
Biomolecules ; 10(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443921

RESUMO

In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.


Assuntos
Proteínas de Anfíbios/metabolismo , Anuros/metabolismo , Defensinas/metabolismo , Pele/metabolismo , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , Arbovírus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Defensinas/química , Defensinas/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Neutrófilos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Trypanosoma cruzi/efeitos dos fármacos
5.
Front Mol Biosci ; 5: 89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555831

RESUMO

Intestinal ischemia and reperfusion injury is a model system of possible consequences of severe trauma and surgery, which might result into tissue dysfunction and organ failure. Neutrophils contribute to the injuries preceded by ischemia and reperfusion. However, the mechanisms by which intestinal ischemia and reperfusion stimulate and activate circulating neutrophils is still not clear. In this work, we used proteomics approach to explore the underlying regulated mechanisms in Wistar rat neutrophils after ischemia and reperfusion. We isolated neutrophils from three different biological groups; control, sham laparotomy, and intestinal ischemia/reperfusion. In the workflow, we included iTRAQ-labeling quantification and peptide fractionation using HILIC prior to LC-MS/MS analysis. From proteomic analysis, we identified 2,045 proteins in total that were grouped into five different clusters based on their regulation trend between the experimental groups. A total of 417 proteins were found as significantly regulated in at least one of the analyzed conditions. Interestingly, the enzyme prediction analysis revealed that ischemia/reperfusion significantly reduced the relative abundance of most of the antioxidant and pro-survival molecules to cause more tissue damage and ROS production whereas some of the significantly up regulated enzymes were involved in cytoskeletal rearrangement, adhesion and migration. Clusters based KEGG pathways analysis revealed high motility, phagocytosis, directional migration, and activation of the cytoskeletal machinery in neutrophils after ischemia and reperfusion. Increased ROS production and decreased phagocytosis were experimentally validated by microscopy assays. Taken together, our findings provide a characterization of the rat neutrophil response to intestinal ischemia and reperfusion and the possible mechanisms involved in the tissue injury by neutrophils after intestinal ischemia and reperfusion.

6.
J Food Prot ; 77(4): 583-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24680069

RESUMO

This work aimed to assess the clonal distribution among 94 strains of Staphylococcus aureus isolated from cow's milk, raw cheese, and a milking machine in 12 dairy farms in northeast Brazil, by analyzing different typing methods and detecting resistance and toxigenic profiles. For the first time, isolates of this region were assessed simultaneously by the polymorphism of the 3'-end coa gene and 16S-23S rDNA, pulsed-field gel electrophoresis, antibiotic resistance phenotyping, and toxigenic arsenal. Although pulsed-field gel electrophoresis patterns showed a wider variation (discriminatory index 0.83) than the PCR-based methods, the internal transcribed spacer-PCR proved to be a useful and inexpensive procedure for conducting epidemiological surveys of S. aureus on a regional scale. Each dairy farm had its own resistance profile, and in two herds, 63% of the strains were multiresistant, probably due to the indiscriminate use of antibiotics in bovine mastitis treatment. No methicillin-resistant S. aureus strains were detected in this study; however, 93.6% of S. aureus strains harbored variable profiles of staphylococcal enterotoxin genes seg, seh, sei, and sej. Transcriptional analysis revealed that 53.3% of staphylococcal enterotoxin genes actually transcribed, pointing out the food poisoning risk of these dairy products to consumers in the region. Based on the detection of the most prevalent clones in a herd or region, appropriate antibiotic therapy and specific immunization can be used for the treatment and control of staphylococcal mastitis.


Assuntos
Antibacterianos/farmacologia , Laticínios/microbiologia , Farmacorresistência Bacteriana , Leite/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Brasil , Bovinos , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Feminino , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Humanos , Mastite Bovina/diagnóstico , Mastite Bovina/tratamento farmacológico , Mastite Bovina/prevenção & controle , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa