RESUMO
Multiple representatives of eulipotyphlan mammals such as shrews have oral venom systems. Venom facilitates shrews to hunt and/or hoard preys. However, little is known about their venom composition, and especially the mechanism to hoard prey in comatose states for meeting their extremely high metabolic rates. A toxin (BQTX) was identified from venomous submaxillary glands of the shrew Blarinella quadraticauda. BQTX is specifically distributed and highly concentrated (~ 1% total protein) in the organs. BQTX shares structural and functional similarities to toxins from snakes, wasps and snails, suggesting an evolutional relevancy of venoms from mammalians and non-mammalians. By potentiating thrombin and factor-XIIa and inhibiting plasmin, BQTX induces acute hypertension, blood coagulation and hypokinesia. It also shows strong analgesic function by inhibiting elastase. Notably, the toxin keeps high plasma stability with a 16-h half-life in-vivo, which likely extends intoxication to paralyze or immobilize prey hoarded fresh for later consumption and maximize foraging profit.
Assuntos
Analgesia/métodos , Hipocinesia/fisiopatologia , Musaranhos/metabolismo , Toxinas Biológicas/metabolismo , Peçonhas/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Pressão Sanguínea/efeitos dos fármacos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Dor/fisiopatologia , Dor/prevenção & controle , Homologia de Sequência de Aminoácidos , Musaranhos/genética , Trombina/antagonistas & inibidores , Trombina/metabolismo , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/genética , Peçonhas/genéticaRESUMO
Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex (TRiC) contains eight paralogous subunits (CCT1-8), and assists the folding of as many as 10% of cytosolic proteome. TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma, and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-ß that can specifically bind to and inhibit CCT4. Anticarin-ß shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-ß potently impedes CCT4-mediated STAT3 maturation. Anticarin-ß displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma. Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.
RESUMO
Delayed wound healing will result in the development of chronic wounds in some diseases, such as diabetes. Amphibian skins possess excellent wound-healing ability and represent a resource for prospective wound-healing promoting compounds. A potential wound-healing promoting peptide (CW49; amino acid sequence APFRMGICTTN) was identified from the frog skin of Odorrana grahami. It promotes wound healing in a murine model with a full-thickness dermal wound in both normal and diabetic animals. In addition to its strong angiogenic ability with respect to the upregulation of some angiogenic proteins, CW49 also showed a significant anti-inflammatory effect in diabetic wounds, which was very important for healing chronic wounds. CW49 had little effect on re-epithelialization, resulting in no significant effect on wound closure rate compared to a vehicle control. Altogether, this indicated that CW49 might accelerate diabetic wound healing by promoting angiogenesis and preventing any excessive inflammatory response. Considering its favorable traits as a small peptide that significantly promotes angiogenesis, CW49 might be an excellent candidate or template for the development of a drug for use in the treatment of diabetic wounds.