Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(3): 3126-3138, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38191301

RESUMO

Developing strategies for the treatment of bacterial biofilms is challenging due to their complex and resilient structure, low permeability to therapeutics, and ability to protect resident pathogens. Herein, we demonstrate that a polylysine-stabilized perfluorocarbon nanoemulsion is favored for penetrating biofilms and sensitizing the cavitation effect of low-intensity ultrasound, resulting in the dispersal of extracellular polymeric substances and killing of the protected cells. Through experiments, we observed a complete penetration of the nanoemulsion in a 40 µm Pseudomonas aeruginosa biofilm and demonstrated that it was induced by the fluidic perfluorocarbon, possibly attributing to its low surface tension. Furthermore, we presented an almost complete antibiofilm effect with a low-intensity ultrasound (1 MHz, 0.75 W/cm2, 5 min) in diverse cases, including cultured biofilms, colonized urinary catheters, and chronic wounds. During the treatment process, the perfluorocarbon phase enhanced the number and imploding energy of ultrasound cavities, thoroughly divided the biofilm structure, prevented biofilm self-healing, and sterilized the resident pathogens. Thus, the penetration and sensitization of the nanoemulsion might serve as a facile and potent strategy for eradicating biofilms in various applications.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Biofilmes , Luz , Pseudomonas aeruginosa
2.
ACS Appl Mater Interfaces ; 16(20): 25909-25922, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716677

RESUMO

Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.


Assuntos
Endometriose , Ácido Hialurônico , Verde de Indocianina , Verde de Indocianina/química , Endometriose/diagnóstico por imagem , Feminino , Animais , Ácido Hialurônico/química , Humanos , Camundongos , Polilisina/química , Meios de Contraste/química , Nanopartículas/química , Imagem Óptica , Corantes Fluorescentes/química
3.
J Colloid Interface Sci ; 670: 742-750, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788441

RESUMO

Exploring highly efficient ultrasound-triggered catalysts is pivotal for various areas. Herein, we presented that Ba2+ doped brookite TiO2 nanorod (TiO2: Ba) with polarization-induced charge separation is a candidate. The replacement of Ba2+ for Ti4+ not only induced significant lattice distortion to induce polarization but also created oxygen vacancy defects for facilitating the charge separation, leading to high-efficiency reactive oxygen species (ROS) evolution in the piezo-catalytic processes. Furthermore, the piezocatalytic ability to degrade dye wastewater demonstrates a rate constant of 0.172 min-1 and achieves a 100 % antibacterial rate at a low dose for eliminating E. coli. This study advances that doping can induce piezoelectricity and reveals that lattice distortion-induced polarization and vacancy defects engineering can improve ROS production, which might impact applications such as water disinfection and sonodynamic therapy.


Assuntos
Antibacterianos , Escherichia coli , Nanotubos , Titânio , Titânio/química , Titânio/farmacologia , Nanotubos/química , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Ondas Ultrassônicas , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/química , Testes de Sensibilidade Microbiana , Propriedades de Superfície , Tamanho da Partícula , Catálise , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa