Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 186(25): 5500-5516.e21, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38016470

RESUMO

Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.


Assuntos
Privação do Sono , Animais , Camundongos , Citocinas/metabolismo , Inflamação , Prostaglandina D2 , Sono/fisiologia , Privação do Sono/genética , Privação do Sono/metabolismo , Síndrome , Humanos , Ratos , Linhagem Celular , Tempestades Ciclônicas , Neutrófilos/metabolismo
2.
Brain ; 147(4): 1294-1311, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289861

RESUMO

Ischaemic stroke causes neuron loss and long-term functional deficits. Unfortunately, effective approaches to preserving neurons and promoting functional recovery remain unavailable. Oligodendrocytes, the myelinating cells in the CNS, are susceptible to oxygen and nutrition deprivation and undergo degeneration after ischaemic stroke. Technically, new oligodendrocytes and myelin can be generated by the differentiation of oligodendrocyte precursor cells (OPCs). However, myelin dynamics and their functional significance after ischaemic stroke remain poorly understood. Here, we report numerous denuded axons accompanied by decreased neuron density in sections from ischaemic stroke lesions in human brain, suggesting that neuron loss correlates with myelin deficits in these lesions. To investigate the longitudinal changes in myelin dynamics after stroke, we labelled and traced pre-existing and newly-formed myelin, respectively, using cell-specific genetic approaches. Our results indicated massive oligodendrocyte death and myelin loss 2 weeks after stroke in the transient middle cerebral artery occlusion (tMCAO) mouse model. In contrast, myelin regeneration remained insufficient 4 and 8 weeks post-stroke. Notably, neuronal loss and functional impairments worsened in aged brains, and new myelin generation was diminished. To analyse the causal relationship between remyelination and neuron survival, we manipulated myelinogenesis by conditional deletion of Olig2 (a positive regulator) or muscarinic receptor 1 (M1R, a negative regulator) in OPCs. Deleting Olig2 inhibited remyelination, reducing neuron survival and functional recovery after tMCAO. Conversely, enhancing remyelination by M1R conditional knockout or treatment with the pro-myelination drug clemastine after tMCAO preserved white matter integrity and neuronal survival, accelerating functional recovery. Together, our findings demonstrate that enhancing myelinogenesis is a promising strategy to preserve neurons and promote functional recovery after ischaemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Humanos , Idoso , Bainha de Mielina/patologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Oligodendroglia/patologia , Neurônios , Diferenciação Celular/fisiologia
3.
J Pathol ; 258(2): 121-135, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723032

RESUMO

Tumour-associated macrophages (TAMs) abundantly infiltrate high-grade gliomas and orchestrate immune response, but their diversity in isocitrate dehydrogenase (IDH)-differential grade 4 gliomas remains largely unknown. This study aimed to dissect the transcriptional states, spatial distribution, and clinicopathological significance of distinct monocyte-derived TAM (Mo-TAM) and microglia-derived TAM (Mg-TAM) clusters across glioblastoma-IDH-wild type and astrocytoma-IDH-mutant-grade 4 (Astro-IDH-mut-G4). Single-cell RNA sequencing was performed on four cases of human glioblastoma and three cases of Astro-IDH-mut-G4. Cell clustering, single-cell regulatory network inference, and gene set enrichment analysis were performed to characterize the functional states of myeloid clusters. The spatial distribution of TAM subsets was determined in human glioma tissues using multiplex immunostaining. The prognostic value of different TAM-cluster specific gene sets was evaluated in the TCGA glioma cohort. Profiling and unbiased clustering of 24,227 myeloid cells from glioblastoma and Astro-IDH-mut-G4 identified nine myeloid cell clusters including monocytes, six Mo/Mg-TAM subsets, dendritic cells, and proliferative myeloid clusters. Different Mo/Mg-TAM clusters manifest functional and transcriptional diversity controlled by specific regulons. Multiplex immunostaining of subset-specific markers identified spatial enrichment of distinct TAM clusters at peri-vascular/necrotic areas in tumour parenchyma or at the tumour-brain interface. Glioblastoma harboured a substantially higher number of monocytes and Mo-TAM-inflammatory clusters, whereas Astro-IDH-mut-G4 had a higher proportion of TAM subsets mediating antigen presentation. Glioblastomas with a higher proportion of monocytes exhibited a mesenchymal signature, increased angiogenesis, and worse patient outcome. Our findings provide insight into myeloid cell diversity and its clinical relevance in IDH-differential grade 4 gliomas, and may serve as a resource for immunotherapy development. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Mutação , Macrófagos Associados a Tumor
4.
Cell Commun Signal ; 19(1): 112, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781973

RESUMO

BACKGROUND: Alzheimer's disease (AD) and glioblastoma are the most common and devastating diseases in the neurology and neurosurgery departments, respectively. Our previous research reports that the AD-related protein Presenilin1 represses cell proliferation by inhibiting the Wnt/ß-catenin pathway in glioblastoma. However, the function of Presenilin1 and the underlying mechanism need to be further investigated. METHODS: The correlations of two genes were conducted on the R2 microarray platform and CGGA. Wound healing, Transwell assays and glioblastoma transplantation were performed to detect invasion ability. Phalloidin staining was employed to show cell morphology. Proximity ligation assays and protein docking assays were employed to detect two protein locations. We also employed western blotting to detect protein expression. RESULTS: We found that Presenilin1 clearly repressed the migration, invasion and mesenchymal transition of glioblastoma cells. Intriguingly, we observed that the expression of Presenilin1 was positively correlated with Sortilin, which is identified as a pro-invasion molecule in glioma. Furthermore, Presenilin1 interacted with Sortilin at the transmembrane domain and repressed Sortilin expression by cleaving it in glioblastoma cells. First, we found that Sortilin introduced the function of Presenilin1 in phosphorylating ß-catenin and repressing invasion in glioblastoma cells. Last, Presenilin1 stimulation sharply suppressed the invasion and mesenchymal transition of glioblastoma in mouse subcutaneous and intracranial transplantation models. CONCLUSIONS: Our study reveals that Sortilin mediates the regulation of ß-catenin by Presenilin1 and transduces the anti-invasive function of Presenilin1, which may provide novel therapeutic targets for glioblastoma treatment. Video Abstract.


Assuntos
Glioblastoma
5.
Cells Tissues Organs ; 210(5-6): 368-379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348265

RESUMO

Glioma is the most common primary malignant tumor of the central nervous system and has a poor prognosis. Therefore, exploring the key molecular targets is a new opportunity for basic research and clinical treatment of glioma. Previous studies found that circRNA-hsa_circ_0073237 was upregulated in gliomas. Our further analyses of the biological function and molecular mechanism of hsa_circ_0073237 showed that hsa_circ_0073237 was also upregulated in glioma cell lines and could combine with miR-345 to inhibit its expression. miR-345 was downregulated in glioma tissues and cells, and targeted to regulate the expression of hepatoma-derived growth factor (HDGF), while HDGF expression was enhanced in glioma. Hsa_circ_0073237 promoted the expression of HDGF in glioma cells by adsorbing miR-345. Hsa_circ_0073237 siRNA, miR-345, and HDGF siRNA effectively inhibited cell viability and invasion and promoted cell apoptosis. When expression of hsa_circ_0073237 and miR-345 was inhibited simultaneously, cell viability, apoptosis, and invasion did not change significantly; however, after transfection with HDGF overexpression vector, the effects of hsa_circ_0073237 siRNA and miR-345 on glioma cell viability, apoptosis, and invasion were obviously reversed. Further construction of glioma xenograft models in nude mice confirmed that the introduction of miR-345 in vivo effectively inhibited tumor growth, significantly reduced tumor diameter and weight, and obviously decreased the expression of HDGF. Therefore, hsa_circ_0073237 can regulate the biological functions of glioma cells through miR-345/HDGF, thereby affecting the progression of tumors, indicating that the hsa_circ_0073237/miR-345/HDGF pathway may be a key target for the treatment of glioma.


Assuntos
Glioma , MicroRNAs , Animais , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Nus , MicroRNAs/genética , RNA Circular
6.
Childs Nerv Syst ; 37(1): 253-257, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533299

RESUMO

PURPOSE: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder characterized by hamartomas in multiple organ systems. The TSC1 and TSC2 genes have been identified as the genetic basis of TSC. Two gene tests were used for definitive genetic diagnosis. METHODS: In our study, the case of a Chinese pediatric patient with seizures, hypomelanotic macules, hyperpigmented patches, multiple parenchymal lesions in the ventricle, and developmental retardation is detailed. Whole-genome sequencing (WGS) and multiplex ligation-dependent probe amplification (MLPA) were employed to detect genetic variations and copy number variations of TSC1 and TSC2. RESULTS: A novel heterozygous nonsense mutation in the TSC2 gene (c.3751A>T, p.Lys1251Ter) was identified in a Chinese pediatric patient suffering from TSC, whose unaffected parents did not carry this mutation. The mutation was classified as "pathogenic" according to the American College of Medical Genetics (ACMG) guidelines. CONCLUSION: WGS was carried out to definitively diagnose and detect variations in the exon and noncoding region of the gene and copy number variations in the whole genome simultaneously. For diseases with complex genetic mechanisms, WGS as the first-line test can be efficient and cost-effective for clinical diagnosis.


Assuntos
Códon sem Sentido , Esclerose Tuberosa , Criança , Variações do Número de Cópias de DNA , Humanos , Mutação , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
7.
Br J Neurosurg ; : 1-8, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34542381

RESUMO

OBJECTIVE: Resection of high-grade glioma with sodium fluorescein can improve the resection rate of the glioma and improve survival. However, it is unclear whether the yellow fluorescence boundary of the high-grade glioma is consistent with the actual boundary of the tumor. This study explores the yellow fluorescence boundary and the actual tumor boundary in high-grade glioma surgery. METHODS: This is a retrospective analysis of 10 patients with high-grade gliomas who underwent tumor visualization with sodium fluorescein. After staining of the tumor, random selections of both developed and non-developed yellow fluorescent border tissue at the fluorescence chromogenic boundary were made, followed by pathological examination. Claudin-5, an important component of the tight connections between vascular endothelial cells, was assessed by immunohistochemistry and qRT-PCR in the tumor and surrounding tissues in order to determine the tumor cell content of the tissue, blood-brain barrier damage, and vascular proliferation. The yellow fluorescence boundary was compared with the actual tumor boundary and the results analyzed. RESULTS: Tumor cells were still detected outside the yellow fluorescence boundary during high-grade glioma surgery (P < 0.05). Claudin-5 expression was higher in high-grade gliomas than in adjacent normal tissues (P < 0.05), while disconnected Claudin-5 expression was associated with intraoperative yellow fluorescence imaging (r = 0.67). CONCLUSIONS: There is a difference between the yellow fluorescence boundary and the actual boundary of the tumor in high-grade glioma, and there are glioma cell infiltrations in the brain tissue of the undeveloped yellow fluorescent border. To ensure patient recovery and function, it is recommended that tumor resection be expanded based on yellow fluorescence visualization. Claudin-5 is overall up-regulated in high-grade gliomas, but some Claudin-5 expression is disconnected. This Claudin-5 expression pattern may be related to the development of yellow fluorescence.

8.
Lab Invest ; 100(4): 619-629, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31748682

RESUMO

Tumor-associated macrophages (TAMs) constitute a large population of glioblastoma and facilitate tumor growth and invasion of tumor cells, but the underlying mechanism remains undefined. In this study, we demonstrate that chemokine (C-C motif) ligand 8 (CCL8) is highly expressed by TAMs and contributes to pseudopodia formation by GBM cells. The presence of CCL8 in the glioma microenvironment promotes progression of tumor cells. Moreover, CCL8 induces invasion and stem-like traits of GBM cells, and CCR1 and CCR5 are the main receptors that mediate CCL8-induced biological behavior. Finally, CCL8 dramatically activates ERK1/2 phosphorylation in GBM cells, and blocking TAM-secreted CCL8 by neutralized antibody significantly decreases invasion of glioma cells. Taken together, our data reveal that CCL8 is a TAM-associated factor to mediate invasion and stemness of GBM, and targeting CCL8 may provide an insight strategy for GBM treatment.


Assuntos
Quimiocina CCL8/metabolismo , Glioblastoma/metabolismo , Macrófagos/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Invasividade Neoplásica/fisiopatologia , Células-Tronco Neoplásicas/citologia , Células Tumorais Cultivadas
9.
J Biol Chem ; 293(17): 6544-6555, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29507094

RESUMO

Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor critical for the regulation of many cellular functions in both normal and neoplastic cells. Here, using human glioblastoma cells, we investigated KLF4's effects on cancer cell metabolism. We found that forced KLF4 expression promotes mitochondrial fusion and induces dramatic changes in mitochondrial morphology. To determine the impact of these changes on the cellular functions following, we analyzed how KLF4 alters glioblastoma cell metabolism, including glucose uptake, glycolysis, pentose phosphate pathway, and oxidative phosphorylation. We did not identify significant differences in baseline cellular metabolism between control and KLF4-expressing cells. However, when mitochondrial function was impaired, KLF4 significantly increased spare respiratory capacity and levels of reactive oxygen species in the cells. To identify the biological effects of these changes, we analyzed proliferation and survival of control and KLF4-expressing cells under stress conditions, including serum and nutrition deprivation. We found that following serum starvation, KLF4 altered cell cycle progression by arresting the cells at the G2/M phase and that KLF4 protected cells from nutrition deprivation-induced death. Finally, we demonstrated that methylation-dependent KLF4-binding activity mediates mitochondrial fusion. Specifically, the downstream targets of KLF4-mCpG binding, guanine nucleotide exchange factors, serve as the effector of KLF4-induced mitochondrial fusion, cell cycle arrest, and cell protection. Our experimental system provides a robust model for studying the interactions between mitochondrial morphology and function, mitochondrial dynamics and metabolism, and mitochondrial fusion and cell death during tumor initiation and progression.


Assuntos
Divisão Celular , Fase G2 , Glioblastoma/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Dinâmica Mitocondrial , Proteínas de Neoplasias/metabolismo , Consumo de Oxigênio , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Neoplasias/genética
10.
BMC Cancer ; 18(1): 1025, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348136

RESUMO

BACKGROUND: The dismal prognosis of patients with glioblastoma (GBM) is attributed to a rare subset of cancer stem cells that display characteristics of tumor initiation, growth, and resistance to aggressive treatment involving chemotherapy and concomitant radiation. Recent research on the substantial role of epigenetic mechanisms in the pathogenesis of cancers has prompted the investigation of the enzymatic modifications of histone proteins for therapeutic drug targeting. In this work, we have examined the function of Krüppel-like factor 9 (KLF9), a transcription factor, in chemotherapy sensitization to histone deacetylase inhibitors (HDAC inhibitors). METHODS: Since GBM neurosphere cultures from patient-derived gliomas are enriched for GBM stem-like cells (GSCs) and form highly invasive and proliferative xenografts that recapitulate the features demonstrated in human patients diagnosed with GBM, we established inducible KLF9 expression systems in these GBM neurosphere cells and investigated cell death in the presence of epigenetic modulators such as histone deacetylase (HDAC) inhibitors. RESULTS: We demonstrated that KLF9 expression combined with HDAC inhibitor panobinostat (LBH589) dramatically induced glioma stem cell death via both apoptosis and necroptosis in a synergistic manner. The combination of KLF9 expression and LBH589 treatment affected cell cycle by substantially decreasing the percentage of cells at S-phase. This phenomenon is further corroborated by the upregulation of cell cycle inhibitors p21 and p27. Further, we determined that KLF9 and LBH589 regulated the expression of pro- and anti- apoptotic proteins, suggesting a mechanism that involves the caspase-dependent apoptotic pathway. In addition, we demonstrated that apoptosis and necrosis inhibitors conferred minimal protective effects against cell death, while inhibitors of the necroptosis pathway significantly blocked cell death. CONCLUSIONS: Our findings suggest a detailed understanding of how KLF9 expression in cancer cells with epigenetic modulators like HDAC inhibitors may promote synergistic cell death through a mechanism involving both apoptosis and necroptosis that will benefit novel combinatory antitumor strategies to treat malignant brain tumors.


Assuntos
Antineoplásicos/farmacologia , Glioblastoma/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Citometria de Fluxo , Expressão Gênica , Glioblastoma/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Panobinostat/farmacologia
11.
Br J Neurosurg ; 32(2): 141-148, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29357709

RESUMO

PURPOSE: Sodium fluorescein (SF) is an ideal dye for intraoperative guided-resection of high-grade gliomas (HGGs). However, it is not well understood whether the SF-guided technique is suitable for different grades of gliomas, and the correlation between fluorescence and pathology is also not yet clear. MATERIALS AND METHODS: In this study, we investigated 28 patients, including 23 patients with HGG and 5 patients with low-grade glioma (LGG). All patients were treated using the SF-guided technique on a Pentero 900 microscope (Carl Zeiss, Oberkochen, Germany). Claudin-5 immunohistochemical (IHC) staining for the tumours and peritumour tissues was analyzed. RESULTS: Intraoperative yellow fluorescence was noted in all the HGGs but not in the LGGs. Claudin-5 expression in the blood brain barrier endothelial cells was downregulated and disconnected in the HGGs (p < 0.05), but had no difference or slightly decreased in the LGGs (p > 0.05). CONCLUSIONS: The SF-guided technique is suitable for HGG surgery but not for LGG surgery. Downregulation of claudin-5 expression may contribute to the presence of yellow fluorescence in the glioma in SF-guided surgery.


Assuntos
Barreira Hematoencefálica/lesões , Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Cirurgia Assistida por Computador/métodos , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Claudina-5/biossíntese , Meios de Contraste , Regulação para Baixo , Feminino , Fluoresceína , Fluorescência , Glioma/diagnóstico por imagem , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Resultado do Tratamento
12.
Exp Cell Res ; 343(2): 148-158, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090014

RESUMO

PURPOSE: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. METHODS: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. RESULTS: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O(6)-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. CONCLUSION: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Dacarbazina/análogos & derivados , Regulação para Baixo/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Transfecção
13.
Cancer Sci ; 107(5): 583-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27171351

RESUMO

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long-term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Animais , Separação Celular , Humanos , Neoplasias Meníngeas/secundário , Recidiva Local de Neoplasia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
14.
Trends Biotechnol ; 42(3): 293-309, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37806896

RESUMO

White matter tracts (WMs) are one of the main invasion paths of glioblastoma multiforme (GBM). The lack of ideal research models hinders our understanding of the details and mechanisms of GBM invasion along WMs. To date, many potential in vitro models have been reported; nerve fiber culture models and nanomaterial models are biocompatible, and the former have electrically active neurons. Brain slice culture models, organoid models, and microfluidic chip models can simulate the real brain and tumor microenvironment (TME), which contains a variety of cell types. These models are closer to the real in vivo environment and are helpful for further studying not only invasion along WMs by GBM, but also perineural invasion and brain metastasis by solid tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Substância Branca , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Substância Branca/metabolismo , Substância Branca/patologia , Invasividade Neoplásica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Acta Neuropathol Commun ; 12(1): 78, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769536

RESUMO

Neurologic Rosai-Dorfman disease (RDD) is a rare type of non-Langerhans cell histiocytosis that affects the central nervous system. Most neurologic RDDs grow like meningiomas, have clear boundaries, and can be completely resected. However, a few RDDs are invasive and aggressive, and no effective treatment options are available because the molecular mechanisms involved remain unknown. Here, we report a case of deadly and glucocorticoid-resistant neurologic RDD and explore its possible pathogenic mechanisms via single-cell RNA sequencing. First, we identified two distinct but evolutionarily related histiocyte subpopulations (the C1Q+ and SPP1+ histiocytes) that accumulated in the biopsy sample. The expression of genes in the KRAS signaling pathway was upregulated, indicating gain-of-function of KRAS mutations. The C1Q+ and SPP1+ histiocytes were highly differentiated and arrested in the G1 phase, excluding the idea that RDD is a lympho-histio-proliferative disorder. Second, although C1Q+ histiocytes were the primary RDD cell type, SPP1+ histiocytes highly expressed several severe inflammation-related and invasive factors, such as WNT5A, IL-6, and MMP12, suggesting that SPP1+ histiocytes plays a central role in driving the progression of this disease. Third, oligodendrocytes were found to be the prominent cell type that initiates RDD via MIF and may resist glucocorticoid treatment via the MDK and PTN signaling pathways. In summary, in this case, we report a rare presentation of neurologic RDD and provided new insight into the pathogenic mechanisms of progressive neurologic RDD. This study will also offer evidence for developing precision therapies targeting this complex disease.


Assuntos
Histiocitose Sinusal , Análise de Célula Única , Humanos , Masculino , Histiócitos/patologia , Histiocitose Sinusal/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Pessoa de Meia-Idade
16.
J Clin Neurosci ; 126: 68-74, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850763

RESUMO

OBJECTIVES: To investigate the causes of space-occupying tumor bed cysts formed early after glioma resection by measuring the osmotic pressure gradient between cystic fluid, serum, and cerebrospinal fluid (CSF) and propose a new method of bedside ultrasound-assisted puncture and drainage (UAP&D) under local anesthesia for treatment. METHODS: Bedside UAP&D under local anesthesia was performed through a burr hole on the skull flap.Following a successful puncture, cystic fluid was collected, while blood and CSF were obtained through vein and lumbar puncture, respectively. The osmotic pressure of all fluids collected was measured. The appearance, biochemical composition, and results of microbial culture of cystic fluid and CSF were analyzed. Within 24 h after UAP&D, a CT examination and Glasgow coma scale (GCS) were assessed. RESULTS: The osmotic pressure of cystic fluid was higher than that of serum and CSF. White blood cell count and protein concentration were higher in the cystic fluid compared to the CSF. Conversely, the concentration of chloride ions and glucose were lower. CT scan confirmed the correct placement of the cysts' drainage tube and that the cysts' volume decreased significantly with continued drainage. Accompanied by a reduction in the volume of cysts, there were significant improvements in GCS score within 24 h after UAP&D. All drainage tubes were removed within 2-5 days, and no puncture tract hemorrhage or infection was observed. CONCLUSION: The osmotic pressure gradient between cystic fluid, serum, and CSF caused the formation of early post-operative space-occupying tumor bed cysts for glioma. UAP&D aligns with the concept that micro-invasive neurosurgery is an effective treatment method for such cysts.

17.
Brain Sci ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36831782

RESUMO

Intracranial fungal infection is a rare condition that often requires surgical intervention. In this study, we present a case of intracranial fungal infection with a space-occupying effect and a long medical history of five years. We comprehensively evaluated the medical history, symptoms, imaging manifestations, and pathological examinations of the patient to confirm this rare case of fungal infection with cyst formation. Moreover, we reviewed the literature on intracranial fungal infection, hoping to draw awareness and attention to this rare disease.

18.
CNS Neurosci Ther ; 29(11): 3430-3445, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37308741

RESUMO

AIMS: Glioblastoma multiforme (GBM) is the deadliest glioma and its resistance to temozolomide (TMZ) remains intractable. Long non-coding RNAs (lncRNAs) play crucial roles in that and this study aimed to investigate underlying mechanism of HOXD-AS2-affected temozolomide sensitivity in glioblastoma. METHODS: We analyzed and validated the aberrant HOXD-AS2 expression in glioma specimens. Then we explored the function of HOXD-AS2 in vivo and in vitro and a clinical case was also reviewed to examine our findings. We further performed mechanistic experiments to investigate the mechanism of HOXD-AS2 in regulating TMZ sensitivity. RESULTS: Elevated HOXD-AS2 expression promoted progression and negatively correlated with prognosis of glioma; HOXD-AS2 attenuated temozolomide sensitivity in vitro and in vivo; The clinical case also showed that lower HOXD-AS2 sensitized glioblastoma to temozolomide; STAT3-induced HOXD-AS2 could interact with IGF2BP2 protein to form a complex and sequentially upregulate STAT3 signaling, thus forming a positive feedback loop regulating TMZ sensitivity in glioblastoma. CONCLUSION: Our study elucidated the crucial role of the HOXD-AS2-STAT3 positive feedback loop in regulating TMZ sensitivity, suggesting that this could be provided as a potential therapeutic candidate of glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , MicroRNAs , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/genética , Retroalimentação , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , MicroRNAs/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição STAT3/metabolismo
19.
Cancer Cell ; 41(4): 693-710.e8, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36963400

RESUMO

Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.


Assuntos
Glioma , Inibidores de Checkpoint Imunológico , Interleucina-8 , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Interleucina-8/metabolismo , Linfócitos T , Microambiente Tumoral
20.
Med Sci Monit ; 18(5): CS37-41, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22534715

RESUMO

BACKGROUND: Choroid plexus carcinoma (CPC) is an uncommon, aggressive, malignant, central nervous system neoplasm that typically occurs in children, presenting with the signs and symptoms of intracranial hypertension and cerebrospinal fluid obstruction. CASE REPORT: We report the case of a 2.5-year-old girl with CPC. The tumor was subtotally removed by microsurgery, followed by gamma knife radiosurgery for the residual lesion. H&E staining indicated that this was a rare case of CPC. Neuropathological studies, assayed by immunohistochemical staining, showed that the tumor sample was positive to antibodies against S-100, CgA, AE1/AE3 (cytokeratin), Ki-67, INI1 and TP53, and was negative to antibodies against Nestin, GFAP, CD133, EMA and AFP. Moreover, stainings for transthyretin and vimentin were focally positive. Interestingly, direct DNA sequencing of the paraffin-embedded tumor sample identified a novel R248Q mutation in the TP53 gene. In contrast to previous reports suggesting that TP53 germline mutations were associated with the pathogenesis of CPC, here we provide a rare case of CPC with TP53 somatic mutation, as evidence that the peritumoral tissue possesses the non-mutant TP53 allele. CONCLUSIONS: Our finding suggests that TP53 somatic mutations, in addition to its germline mutations, may also be involved in the pathogenesis of pediatric CPC.


Assuntos
Neoplasias do Plexo Corióideo/genética , Genes p53 , Mutação em Linhagem Germinativa , Pré-Escolar , Evolução Fatal , Humanos , Imuno-Histoquímica , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa