Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(33): 21719-21729, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34471774

RESUMO

This work presents a rapid and facile way to access the cell wall of wood with magnetic nanoparticles (NPs), providing insights into a method of wood modification to prepare hybrid bio-based functional materials. Diffusion-driven infiltration into Scots pine (Pinus sylvestris L.) sapwood was achieved using colloidal Fe3O4 nanoparticles. Optical microscopy, scanning electron microscopy/energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray powder diffraction analyses were used to detect and assess the accessibility of the cell wall to Fe3O4. The structural changes, filling of tracheids (cell lumina), and NP infiltration depth were further evaluated by performing X-ray microcomputed tomography analysis. Fourier transform infrared spectroscopy was used to assess the chemical changes in Scots pine induced by the interaction of the wood with the solvent. The thermal stability of Fe3O4-modified wood was studied by thermogravimetric analysis. Successful infiltration of the Fe3O4 NPs was confirmed by measuring the magnetic properties of cross-sectioned layers of the modified wood. The results indicate the feasibility of creating multiple functionalities that may lead to many future applications, including structural nanomaterials with desirable thermal properties, magnetic devices, and sensors.

2.
Appl Opt ; 49(8): 1314-22, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20220886

RESUMO

We describe a method of measuring spatiotemporal (ST) structure and covariance functions of the phase fluctuations in a collimated light beam propagated through a region of refractive index turbulence. The measurements are performed in a small wind tunnel, in which a turbulent temperature field is created using heated wires at the inlet of the test section. A collimated sheet of light is sent through the channel, and the phase fluctuations across the sheet are measured. The spatial phase structure function can be estimated from a series of images captured at an arbitrary frame rate by spatial phase unwrapping, whereas the ST structure function requires a time resolved measurement and a full three-dimensional unwrapping. The measured spatial phase structure function shows agreement with the Kolmogorov theory with a pronounced inertial subrange, which is taken as a validation of the method. Because of turbulent mixing in the boundary layers close to the walls of the channel, the flow will not obey the Taylor hypothesis of frozen turbulence. This can be clearly seen in the ST structure function calculated in a coordinate system that moves along with the bulk flow. At zero spatial separation, this function should always be zero according to the Taylor hypothesis, but due to the mixing effect there will be a growth in the structure function with increasing time difference depending on the rate of mixing.

3.
Materials (Basel) ; 12(6)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871235

RESUMO

The present study focuses on three-dimensional (3D) microstructure analysis of dry natural snow during compaction. An X-ray computed microtomography (micro-CT) system was used to record a total of 1601 projections of a snow volume. Experiments were performed in-situ at four load states as 0 MPa, 0.3 MPa, 0.6 MPa and 0.8 MPa, to investigate the effect of compaction on structural features of snow grains. The micro-CT system produces high resolution images (4.3 µm voxel) in 6 h of scanning time. The micro-CT images of the investigated snow volume illustrate that grain shapes are mostly dominated by needles, capped columns and dendrites. It was found that a significant number of grains appeared to have a deep hollow core irrespective of the grain shape. Digital volume correlation (DVC) was applied to investigate displacement and strain fields in the snow volume due to the compaction. Results from the DVC analysis show that grains close to the moving punch experience most of the displacement. The reconstructed snow volume is segmented into several cylinders via horizontal cross-sectioning, to evaluate the vertical heterogeneity of porosity distribution of the snow volume. It was observed that the porosity (for the whole volume) in principle decreases as the level of compaction increases. A distinct vertical heterogeneity is observed in porosity distribution in response to compaction. The observations from this initial study may be useful to understand the snow microstructure under applied stress.

4.
Appl Opt ; 47(18): 3269-74, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18566622

RESUMO

A digital holographic interferometry setup used to measure radial vibrations along a rotating shaft is presented. A continuous Nd:YAG laser and a high-speed digital camera are used for recording the holograms. The shaft was polished optically smooth to avoid speckle noise from the rotating surface. The light reflected from the shaft was directed onto a diffuser which in turn was imaged by the holographic system. Simultaneous measurements with a laser vibrometer were performed at one point and comparisons between the signals showed good agreement. It is shown that different vibration components of a rotating shaft can be simultaneously measured with this technique.

5.
Appl Opt ; 47(16): 2971-8, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18516114

RESUMO

The problem of imaging through turbulent media has been studied frequently in connection with astronomical imaging and airborne radars. Therefore most image restoration methods encountered in the literature assume a stationary object, e.g., a star or a piece of land. In this paper the problem of interferometric measurements of slowly moving or deforming objects in the presence of air disturbances and vibrations is discussed. Measurement noise is reduced by postprocessing the data with a digital noise suppression filter that uses a reference noise signal measured on a small stationary plate inserted in the field of view. The method has proven successful in reducing noise in the vicinity of the reference point where the size of the usable area depends on the degree of spatial correlation in the noise, which in turn depends on the spatial scales present in the air turbulence. Vibrations among the optical components in the setup tend to produce noise that is highly correlated across the field of view and is thus efficiently reduced by the filter.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa