Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Global Biogeochem Cycles ; 32(1): 2-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29576683

RESUMO

Coccolithophores are a critical component of global biogeochemistry, export fluxes, and seawater optical properties. We derive globally significant relationships to estimate integrated coccolithophore and coccolith concentrations as well as integrated concentrations of particulate inorganic carbon (PIC) from their respective surface concentration. We also examine surface versus integral relationships for other biogeochemical variables contributed by all phytoplankton (e.g., chlorophyll a and particulate organic carbon) or diatoms (biogenic silica). Integrals are calculated using both 100 m integrals and euphotic zone integrals (depth of 1% surface photosynthetically available radiation). Surface concentrations are parameterized in either volumetric units (e.g., m-3) or values integrated over the top optical depth. Various relationships between surface concentrations and integrated values demonstrate that when surface concentrations are above a specific threshold, the vertical distribution of the property is biased to the surface layer, and when surface concentrations are below a specific threshold, the vertical distributions of the properties are biased to subsurface maxima. Results also show a highly predictable decrease in explained-variance as vertical distributions become more vertically heterogeneous. These relationships have fundamental utility for extrapolating surface ocean color remote sensing measurements to 100 m depth or to the base of the euphotic zone, well beyond the depths of detection for passive ocean color remote sensors. Greatest integrated concentrations of PIC, coccoliths, and coccolithophores are found when there is moderate stratification at the base of the euphotic zone.

2.
J Phycol ; 50(2): 376-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988194

RESUMO

Allelopathic interactions among phytoplankton are well documented. The potency of allelopathic species and responses of target species to allelochemicals are quite variable, however, limiting full understanding of the role these interactions may play in nature. One trait that may influence the sensitivity of an individual to allelochemicals is cell size. The few studies that have examined relationships between cell size and susceptibility to allelochemicals have compared different species and thus could not distinguish between the role of size and species-specific physiological differences. Culturing an actively sexually reproducing diatom allowed us to focus on the influence of target cell size within a single species. We studied growth and nutrient acquisition by the chain-forming Thalassiosira cf. gravida Clever in the presence and absence of allelochemicals released by Alexandrium fundyense Balech as a function of T. cf. gravida cell size. Upon exposure to filtrate of A. fundyense, T. cf. gravida cultures "bleached" and both growth and nutrient utilization ceased for up to 4 d. The magnitude of the effect was dependent on filtrate concentration and T. cf. gravida cell surface area:volume ratio. The greatest inhibition was observed on the smallest cells, while T. cf. gravida cultures that had undergone cell enlargement via sexual reproduction were least sensitive to A. fundyense filtrate. These results demonstrate that competitor cell size, independent from taxonomy, may influence the outcome of allelopathic interactions. The findings presented here suggest a potential ecological impact of diatom cell size reduction and sexual reproduction that has not yet been described and that may be important in determining diatom survival and success.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa