Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 462(7276): 1056-60, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20033048

RESUMO

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Filogenia , Actinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biodiversidade , Bases de Dados Genéticas , Genes de RNAr/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
2.
Nat Methods ; 7(6): 455-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20436475

RESUMO

We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.


Assuntos
Biologia Computacional/métodos , Genoma Arqueal , Genoma Bacteriano , Modelos Genéticos
3.
Nucleic Acids Res ; 38(Database issue): D382-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19864254

RESUMO

The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at http://img.jgi.doe.gov.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Biologia Computacional/tendências , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Armazenamento e Recuperação da Informação/métodos , Internet , Plasmídeos/genética , Estrutura Terciária de Proteína , Software , Interface Usuário-Computador
4.
J Bacteriol ; 193(20): 5869-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952543

RESUMO

Thermotoga sp. strain RQ2 is probably a strain of Thermotoga maritima. Its complete genome sequence allows for an examination of the extent and consequences of gene flow within Thermotoga species and strains. Thermotoga sp. RQ2 differs from T. maritima in its genes involved in myo-inositol metabolism. Its genome also encodes an apparent fructose phosphotransferase system (PTS) sugar transporter. This operon is also found in Thermotoga naphthophila strain RKU-10 but no other Thermotogales. These are the first reported PTS transporters in the Thermotogales.


Assuntos
Genoma Bacteriano , Água do Mar/microbiologia , Thermotoga maritima/genética , Thermotoga maritima/isolamento & purificação , Açores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Frutose/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Óperon , Fosfotransferases/genética , Fosfotransferases/metabolismo , Thermotoga maritima/enzimologia , Thermotoga maritima/metabolismo
5.
Appl Environ Microbiol ; 77(22): 8052-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926202

RESUMO

The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis.


Assuntos
Biocombustíveis , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Redes e Vias Metabólicas/genética , Metiltransferases/metabolismo , Organismos Geneticamente Modificados , Ácidos Graxos/metabolismo , Éteres Metílicos/metabolismo , Metiltransferases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato , Triglicerídeos/metabolismo
6.
J Bacteriol ; 192(3): 841-60, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948807

RESUMO

Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to beta-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.


Assuntos
Actinobacteria/genética , Genoma Bacteriano/genética , Micrococcus luteus/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Genéticos
7.
Environ Microbiol ; 12(8): 2289-301, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966920

RESUMO

Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for ß-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.


Assuntos
Genoma Bacteriano , Bacilos Gram-Positivos Formadores de Endosporo/genética , Bacilos Gram-Positivos Formadores de Endosporo/metabolismo , Hidrogênio/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/metabolismo , Formiatos/metabolismo , Oxirredução , RNA Ribossômico/genética , Análise de Sequência de DNA
8.
Environ Microbiol ; 12(10): 2738-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20482743

RESUMO

Spore-forming, Gram-positive sulfate-reducing bacteria (SRB) represent a group of SRB that dominates the deep subsurface as well as niches in which resistance to oxygen and dessication is an advantage. Desulfotomaculum reducens strain MI-1 is one of the few cultured representatives of that group with a complete genome sequence available. The metabolic versatility of this organism is reflected in the presence of genes encoding for the oxidation of various electron donors, including three- and four-carbon fatty acids and alcohols. Synteny in genes involved in sulfate reduction across all four sequenced Gram-positive SRB suggests a distinct sulfate-reduction mechanism for this group of bacteria. Based on the genomic information obtained for sulfate reduction in D. reducens, the transfer of electrons to the sulfite and APS reductases is proposed to take place via the quinone pool and heterodisulfide reductases respectively. In addition, both H(2) -evolving and H(2) -consuming cytoplasmic hydrogenases were identified in the genome, pointing to potential cytoplasmic H(2) cycling in the bacterium. The mechanism of metal reduction remains unknown.


Assuntos
Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Genoma Bacteriano , Metais/metabolismo , Sulfatos/metabolismo , Sequência de Bases , DNA Bacteriano/análise , Desulfotomaculum/classificação , Hidrogênio/metabolismo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
9.
Archaea ; 2010: 690737, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21234345

RESUMO

Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP(T) was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.


Assuntos
DNA Arqueal/genética , Genoma Arqueal , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Methanosarcinaceae/genética , Análise de Sequência de DNA , DNA Arqueal/química , Metabolismo Energético/genética , Methanosarcinaceae/isolamento & purificação , Dados de Sequência Molecular , Utah
10.
Nucleic Acids Res ; 36(Database issue): D534-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17932063

RESUMO

IMG/M is a data management and analysis system for microbial community genomes (metagenomes) hosted at the Department of Energy's (DOE) Joint Genome Institute (JGI). IMG/M consists of metagenome data integrated with isolate microbial genomes from the Integrated Microbial Genomes (IMG) system. IMG/M provides IMG's comparative data analysis tools extended to handle metagenome data, together with metagenome-specific analysis tools. IMG/M is available at http://img.jgi.doe.gov/m.


Assuntos
Bases de Dados Genéticas , Microbiologia Ambiental , Genoma Arqueal , Genoma Bacteriano , Sistemas de Gerenciamento de Base de Dados , Genômica , Internet , Software
11.
Nucleic Acids Res ; 36(Database issue): D528-33, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17933782

RESUMO

The integrated microbial genomes (IMG) system is a data management, analysis and annotation platform for all publicly available genomes. IMG contains both draft and complete JGI microbial genomes integrated with all other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and annotating genomes, genes and functions, individually or in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through quarterly releases. IMG is provided by the DOE-Joint Genome Institute (JGI) and is available from http://img.jgi.doe.gov.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Genômica , Genoma Viral , Internet , Plasmídeos/genética , Proteínas/química , Proteínas/genética , Software , Integração de Sistemas
12.
Biochim Biophys Acta ; 1781(11-12): 731-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18930839

RESUMO

Phosphatidate phosphatases, PAPs, are key enzymes in lipid biosynthesis and signaling. Type I PAP enzymes participate in de-novo phospholipid biosynthesis, whereas type II PAP enzymes have an established role in lipid signaling. To identify novel human type II PAPs potentially involved in de-novo phospholipid synthesis we used bioinformatics to screen for enzymes with an active site exposed to the cytosolic side of membranes. Two related enzymes, a novel lipid phosphatase related protein (LPRP-A) and a presqualene diphosphate phosphatase (PA-PSP) met this criterion. PA-PSP and LPRP-A have differential tissue and subcellular distribution, and novel yet differential roles in lipid metabolism. Specifically, PA-PSP, but not LPRP-A, was a potent Mg(2+)-independent, NEM-insensitive type II PAP. Subcellular fractionation detection indicated that both proteins were associated with membranes, while immunofluorescent deconvolution imaging revealed that these membranes were exclusively from the nuclear envelope and the endoplasmic reticulum. PA-PSP overexpression, but not LPRP-A, accelerated the synthesis of phosphatidylcholine and caused accumulation of triacylglycerol with concomitant decrease in the rate of phosphatidylinositol synthesis. Coexpression of human CTP:phosphocholine cytidylyltransferase-alpha with PA-PSP enhanced the effect of PA-PSP on phosphatidylcholine levels, yet attenuated its effect on triacylglycerol. Taken together, our studies provide the first evidence that the eukaryotic, ER-resident PA-PSP is a bifunctional enzyme with specific type II PAP activity, and regulates, in addition to type I PAPs, the de-novo biosynthesis of phospholipids and triacylglycerols.


Assuntos
Fosfatidato Fosfatase/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Triglicerídeos/biossíntese , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Colesterol/metabolismo , Cromatografia em Camada Fina , Clonagem Molecular , Citosol/metabolismo , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Corantes de Rosanilina/química , Frações Subcelulares
13.
Prog Lipid Res ; 46(3-4): 171-99, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17512056

RESUMO

Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.


Assuntos
Evolução Biológica , Células Eucarióticas/metabolismo , Genômica , Fosfolipídeos/biossíntese , Animais , Humanos
14.
J Bacteriol ; 190(8): 2957-65, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263724

RESUMO

We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.


Assuntos
Vias Biossintéticas , DNA Arqueal/genética , Genoma Arqueal , Thermofilaceae/genética , Proteínas Arqueais/genética , Composição de Bases , Proteínas de Transporte/genética , DNA Arqueal/química , Microbiologia Ambiental , Genes Arqueais , Islândia , Dados de Sequência Molecular , Análise de Sequência de DNA , Thermofilaceae/isolamento & purificação
15.
Nucleic Acids Res ; 34(Database issue): D344-8, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381883

RESUMO

The integrated microbial genomes (IMG) system is a new data management and analysis platform for microbial genomes provided by the Joint Genome Institute (JGI). IMG contains both draft and complete JGI genomes integrated with other publicly available microbial genomes of all three domains of life. IMG provides tools and viewers for analyzing genomes, genes and functions, individually or in a comparative context. IMG allows users to focus their analysis on subsets of genes and genomes of interest and to save the results of their analysis. IMG is available at http://img.jgi.doe.gov.


Assuntos
Bases de Dados Genéticas , Genoma Arqueal , Genoma Bacteriano , Genômica , Bacteriófagos/genética , Sistemas de Gerenciamento de Base de Dados , Internet , Filogenia , Integração de Sistemas , Interface Usuário-Computador
16.
FEBS Lett ; 581(24): 4639-44, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17825826

RESUMO

Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl-CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency.


Assuntos
Regulação Enzimológica da Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Linhagem Celular , Citosol/metabolismo , DNA/genética , Éxons/genética , Genoma/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética
17.
Bioinformatics ; 22(14): e359-67, 2006 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16873494

RESUMO

The application of shotgun sequencing to environmental samples has revealed a new universe of microbial community genomes (metagenomes) involving previously uncultured organisms. Metagenome analysis, which is expected to provide a comprehensive picture of the gene functions and metabolic capacity for microbial communities, needs to be conducted in the context of a comprehensive data management and analysis system. We present in this paper IMG/M, an experimental metagenome data management and analysis system that is based on the Integrated Microbial Genomes (IMG) system. IMG/M provides tools and viewers for analyzing both metagenomes and isolate genomes individually or in a comparative context. IMG/M is available at http://img.jgi.doe.gov/m.


Assuntos
Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/fisiologia , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma Bacteriano/genética , Modelos Biológicos , Proteoma/metabolismo , Armazenamento e Recuperação da Informação/métodos , Transdução de Sinais/fisiologia , Interface Usuário-Computador
18.
PLoS One ; 7(6): e39331, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22723998

RESUMO

Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Celulose/metabolismo , Genômica , Transportadores de Cassetes de Ligação de ATP/genética , Actinobacteria/classificação , Aerobiose , Celulase/genética , Celulase/metabolismo , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Genômica/métodos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Óperon , Filogenia , Transcrição Gênica
19.
Stand Genomic Sci ; 7(1): 91-106, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23450070

RESUMO

Syntrophobacter fumaroxidans strain MPOB(T) is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project.

20.
ISME J ; 5(1): 122-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20686509

RESUMO

Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium inside a hyper-mesophilic (that is, between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ß-oxidation to H(2)/CO(2) and acetate. These intermediates are converted to CH(4)/CO(2) by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to CO(2)/H(2) and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H(2)-producing syntroph-methanogen partnership that may serve to improve community stability.


Assuntos
Reatores Biológicos/microbiologia , Ecossistema , Ácidos Ftálicos/metabolismo , Biodegradação Ambiental , Euryarchaeota/genética , Euryarchaeota/metabolismo , Metagenoma/genética , Metano/metabolismo , Peptococcaceae/metabolismo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa