Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(6): 069902, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420355

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.116.217201.

2.
Phys Rev Lett ; 122(21): 217003, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283313

RESUMO

We report neutron scattering measurements of single-crystalline YFe_{2}Ge_{2} in the normal state, which has the same crystal structure as the 122 family of iron pnictide superconductors. YFe_{2}Ge_{2} does not exhibit long-range magnetic order but exhibits strong spin fluctuations. Like the iron pnictides, YFe_{2}Ge_{2} displays anisotropic stripe-type antiferromagnetic spin fluctuations at (π, 0, π). More interesting, however, is the observation of strong spin fluctuations at the in-plane ferromagnetic wave vector (0, 0, π). These ferromagnetic spin fluctuations are isotropic in the (H, K) plane, whose intensity exceeds that of stripe spin fluctuations. Both the ferromagnetic and stripe spin fluctuations remain gapless down to the lowest measured energies. Our results naturally explain the absence of magnetic order in YFe_{2}Ge_{2} and also imply that the ferromagnetic correlations may be a key ingredient for iron-based materials.

3.
Phys Rev Lett ; 116(21): 217201, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27284670

RESUMO

A hidden order that emerges in the frustrated pyrochlore Tb_{2+x}Ti_{2-x}O_{7+y} with T_{c}=0.53 K is studied using specific heat, magnetization, and neutron scattering experiments on a high-quality single crystal. Semiquantitative analyses based on a pseudospin-1/2 Hamiltonian for ionic non-Kramers magnetic doublets demonstrate that it is an ordered state of electric quadrupole moments. The elusive spin liquid state of the nominal Tb_{2}Ti_{2}O_{7} is most likely a U(1) quantum spin-liquid state.

4.
Phys Rev Lett ; 116(19): 197004, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232038

RESUMO

An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

5.
Proc Natl Acad Sci U S A ; 109(27): E1815-9, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22647607

RESUMO

Widespread adoption of superconducting technologies awaits the discovery of new materials with enhanced properties, especially higher superconducting transition temperatures T(c). The unexpected discovery of high T(c) superconductivity in cuprates suggests that the highest T(c)s occur when pressure or doping transform the localized and moment-bearing electrons in antiferromagnetic insulators into itinerant carriers in a metal, where magnetism is preserved in the form of strong correlations. The absence of this transition in Fe-based superconductors may limit their T(c)s, but even larger T(c)s may be possible in their isostructural Mn analogs, which are antiferromagnetic insulators like the cuprates. It is generally believed that prohibitively large pressures would be required to suppress the effects of the strong Hund's rule coupling in these Mn-based compounds, collapsing the insulating gap and enabling superconductivity. Indeed, no Mn-based compounds are known to be superconductors. The electronic structure calculations and X-ray diffraction measurements presented here challenge these long held beliefs, finding that only modest pressures are required to transform LaMnPO, isostructural to superconducting host LaFeAsO, from an antiferromagnetic insulator to a metallic antiferromagnet, where the Mn moment vanishes in a second pressure-driven transition. Proximity to these charge and moment delocalization transitions in LaMnPO results in a highly correlated metallic state, the familiar breeding ground of superconductivity.


Assuntos
Ferro/química , Lantânio/química , Magnetismo/métodos , Manganês/química , Polônio/química , Condutividade Elétrica , Impedância Elétrica , Elétrons , Óptica e Fotônica/métodos , Pressão , Temperatura
6.
Nature ; 453(7197): 899-902, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18509333

RESUMO

Following the discovery of long-range antiferromagnetic order in the parent compounds of high-transition-temperature (high-T(c)) copper oxides, there have been efforts to understand the role of magnetism in the superconductivity that occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Superconductivity in the newly discovered rare-earth iron-based oxide systems ROFeAs (R, rare-earth metal) also arises from either electron or hole doping of their non-superconducting parent compounds. The parent material LaOFeAs is metallic but shows anomalies near 150 K in both resistivity and d.c. magnetic susceptibility. Although optical conductivity and theoretical calculations suggest that LaOFeAs exhibits a spin-density-wave (SDW) instability that is suppressed by doping with electrons to induce superconductivity, there has been no direct evidence of SDW order. Here we report neutron-scattering experiments that demonstrate that LaOFeAs undergoes an abrupt structural distortion below 155 K, changing the symmetry from tetragonal (space group P4/nmm) to monoclinic (space group P112/n) at low temperatures, and then, at approximately 137 K, develops long-range SDW-type antiferromagnetic order with a small moment but simple magnetic structure. Doping the system with fluorine suppresses both the magnetic order and the structural distortion in favour of superconductivity. Therefore, like high-T(c) copper oxides, the superconducting regime in these iron-based materials occurs in close proximity to a long-range-ordered antiferromagnetic ground state.

7.
Phys Rev Lett ; 110(1): 017202, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23383833

RESUMO

Neutron diffraction on the double perovskite Sr(2)YRuO(6) with a quasi-fcc lattice of Ru moments reveals planar magnetic correlations that condense into a partial long-range ordered state with coupled alternate antiferromagnetic (AFM) YRuO(4) square layers coexisting with the short-range correlations below T(N1) = 32 K. A second transition to a fully ordered AFM state below T(N2) = 24 K is observed. The reduced dimensionality of the spin correlations is arguably due to a cancellation of the magnetic coupling between consecutive AFM square layers in fcc antiferromagnets, which is the simplest three-dimensional frustrated magnet model system.

8.
Phys Rev Lett ; 110(15): 157202, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167303

RESUMO

Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEP's) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via a divergent magnetic susceptibility (e.g., χ''(2.05 T,2.2 K)/χ''(3 T,2.2 K)≈23,500%, comparable to the critical opalescence in water) in the hexagonal insulating antiferromagnet HoMnO3.

9.
Phys Rev Lett ; 111(4): 047001, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23931395

RESUMO

Magnetization, nuclear magnetic resonance, high-resolution x-ray diffraction, and magnetic field-dependent neutron diffraction measurements reveal a novel magnetic ground state of Ba0.60K0.40Mn2As2 in which itinerant ferromagnetism (FM) below a Curie temperature TC≈100 K arising from the doped conduction holes coexists with collinear antiferromagnetism (AFM) of the Mn local moments that order below a Néel temperature TN=480 K. The FM ordered moments are aligned in the tetragonal ab plane and are orthogonal to the AFM ordered Mn moments that are aligned along the c axis. The magnitude and nature of the low-T FM ordered moment correspond to complete polarization of the doped-hole spins (half-metallic itinerant FM) as deduced from magnetization and ab-plane electrical resistivity measurements.

10.
Nat Commun ; 14(1): 2658, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160929

RESUMO

Ferromagnetic (FM) order in a two-dimensional kagome layer is predicted to generate a topological Chern insulator without an applied magnetic field. The Chern gap is largest when spin moments point perpendicular to the kagome layer, enabling the capability to switch topological transport properties, such as the quantum anomalous Hall effect, by controlling the spin orientation. In TbMn6Sn6, the uniaxial magnetic anisotropy of the Tb3+ ion is effective at generating the Chern state within the FM Mn kagome layers while a spin-reorientation (SR) transition to easy-plane order above TSR = 310 K provides a mechanism for switching. Here, we use inelastic neutron scattering to provide key insights into the fundamental nature of the SR transition. The observation of two Tb excitations, which are split by the magnetic anisotropy energy, indicates an effective two-state orbital character for the Tb ion, with a uniaxial ground state and an isotropic excited state. The simultaneous observation of both modes below TSR confirms that orbital fluctuations are slow on magnetic and electronic time scales < ps and act as a spatially-random orbital alloy. A thermally-driven critical concentration of isotropic Tb ions triggers the SR transition.

11.
Nature ; 442(7098): 59-62, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16823448

RESUMO

In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations (phonons). In high-transition-temperature (high-T(c)) copper oxides, it is generally believed that magnetic excitations might play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Indeed, a sharp magnetic excitation termed 'resonance' has been observed by neutron scattering in a number of hole-doped materials. The resonance is intimately related to superconductivity, and its interaction with charged quasi-particles observed by photoemission, optical conductivity, and tunnelling suggests that it might play a part similar to that of phonons in conventional superconductors. The relevance of the resonance to high-T(c) superconductivity, however, has been in doubt because so far it has been found only in hole-doped materials. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta (T(c) = 24 K). We find that the resonance energy (E(r)) is proportional to T(c) via E(r) approximately 5.8k(B)T(c) for all high-T(c) superconductors irrespective of electron- or hole-doping. Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must be essential in the mechanism of superconductivity.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26900514

RESUMO

The new thermal triple-axis spectrometer at the NIST Center for Neutron Research (NCNR) is located at the BT-7 beam port. The 165 mm diameter reactor beam is equipped with a selection of Söller collimators, beam-limiters, and a pyrolytic graphite (PG) filter to tailor the beam for the dual 20×20 cm(2) double-focusing monochromator system that provides monochromatic fluxes exceeding 10(8) n/cm(2)/s onto the sample. The two monochromators installed are PG(002) and Cu(220), which provide incident energies from 5 meV to above 500 meV. The computer controlled analyzer system offers six standard modes of operation, including a diffraction detector, a position-sensitive detector (PSD) in diffraction mode, horizontal energy focusing analyzer with detector, a Q-E mode employing a flat analyzer and PSD, a constant-E mode with the analyzer crystal system and PSD, and a conventional mode with a selection of Söller collimators and detector. Additional configurations for specific measurement needs are also available. This paper discusses the capabilities and performance for this new state-of-the-art neutron spectrometer.

13.
Phys Rev Lett ; 107(20): 207202, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22181763

RESUMO

We report an inelastic neutron scattering study of acoustic phonons in the charge and orbitally ordered bilayer manganite LaSr(2)Mn(2)O(7). For excitation energies less than 15 meV, we observe an abrupt increase (decrease) of the phonon energies (linewidths) of a transverse acoustic phonon branch at q = (h, h, 0), h ≤ 0.3, upon entering the low temperature charge and orbital ordered state (T(COO) = 225 K). This indicates a reduced electron-phonon coupling due to a decrease of electronic states at the Fermi level leading to a partial removal of the Fermi surface below T(COO) and provides direct experimental evidence for a link between electron-phonon coupling and charge order in manganites.

14.
Phys Rev B ; 103(17)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37588030

RESUMO

We report the magnetic ordering and structural distortion in PrFeAsO crystals, the basis compound for one of the oxypnictide superconductors, using high-resolution x-ray diffraction, neutron diffraction, and x-ray resonant magnetic scattering (XRMS). We find the structural tetragonal-to-orthorhombic phase transition at TS=147K, the AFM phase transition of the Fe moments at TFe=72K, and the Pr AFM phase transition at TPr=21K. Combined high-resolution neutron diffraction and XRMS show unambiguously that the Pr moments point parallel to the longer orthorhombic a axis and order antiferromagnetically along the a axis but ferromagnetically along the b and c directions in the stripelike AFM order. The temperature-dependent magnetic order parameter of the Pr moments shows no evidence for a reorientation of moments.

15.
Phys Rev Lett ; 104(14): 147204, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20481958

RESUMO

We have performed polarized and unpolarized small angle neutron scattering experiments on single crystals of HoMnO(3) and have found that an increase in magnetic scattering at low momentum transfers begins upon cooling through temperatures close to the spin reorientation transition at T(SR) approximately 40 K. We attribute the increase to an uncompensated magnetization arising within antiferromagnetic domain walls. Polarized neutron scattering experiments performed while applying an electric field show that the field suppresses magnetic scattering below T approximately 50 K, indicating that the electric field affects the magnetization via the antiferromagnetic domain walls rather than through a change to the bulk magnetic order.

16.
Phys Rev Lett ; 104(1): 017204, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20366390

RESUMO

We use neutron diffraction to study the structural and magnetic phase diagram of CeFeAs(1-x)P(x)O. We find that replacing the larger arsenic with smaller phosphorus in CeFeAs(1-x)P(x)O simultaneously suppresses the AFM order and orthorhombic distortion near x=0.4, thus suggesting the presence of a magnetic quantum critical point. Our detailed structural analysis reveals that the pnictogen height is an important controlling parameter for their electronic and magnetic properties, and may play an important role in electron pairing and superconductivity of these materials.

17.
Proc Natl Acad Sci U S A ; 104(26): 10796-801, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17578911

RESUMO

We use neutron scattering to study the lattice and magnetic structure of the layered half-doped manganite Pr(0.5)Ca(1.5)MnO(4). On cooling from high temperature, the system first becomes charge-and orbital-ordered (CO/OO) near T(CO) = 300 K and then develops checkerboard-like antiferromagnetic (AF) order below T(N) = 130 K. At temperatures above T(N) but below T(CO) (T(N)

18.
Phys Rev B ; 1022020.
Artigo em Inglês | MEDLINE | ID: mdl-34136737

RESUMO

We report measurements on Ti4MnBi2, where a crystal structure involving linear chains of Mn ions suggests one-dimensional magnetic character. The electrical resistivity is metallic, consistent with the results of electronic-structure calculations that find a robust Fermi surface albeit with moderate electronic correlations. A Curie-Weiss fit to the magnetic susceptibility suggests that the Mn moments are in the low-spin S = 1/2 configuration. Neutron diffraction measurements detect weak antiferromagnetic order within the Mn chains, with further evidence for the small staggered moment coming from the entropy associated with the ordering peak in the specific heat as well as from the results of spin-polarized electronic-structure calculations. The antiferromagnetic moments are apparently associated with the d x 2 - y 2 and d xy orbitals of Mn while the remaining Mn orbitals are delocalized and nonmagnetic. Strong quantum fluctuations, possibly related to an electronic instability that forms the Mn moment or to the one-dimensional character of Ti4MnBi2, nearly overcome magnetic order.

19.
Phys Rev B ; 102(19)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37720206

RESUMO

We report the evolution of the magnetic properties of Ce2Rh1-xIrxIn8-yCdy single crystals. In particular, for Ce2Rh0.5Ir0.5In8 (TN=2.0K) and Ce2Rh0.5Ir0.5In7.79Cd0.21 (TN=4.2K), we have solved the magnetic structure of these compounds using single-crystal neutron magnetic diffraction experiments. Taking the magnetic structure of the Ce2RhIn8 heavy-fermion antiferromagnet as a reference, we have identified no changes in the q=12,12,0 magnetic wave vector; however, the direction of the ordered Ce3+ moments rotates toward the ab plane, under the influence of both dopants. By constraining the analysis of the crystalline electric field (CEF) with the experimental ordered moment's direction and high-temperature magnetic-susceptibility data, we have used a mean-field model with tetragonal CEF and exchange interactions to gain insight into the CEF scheme and anisotropy of the CEF ground-state wave function when Cd and Ir are introduced into Ce2RhIn8. Consistent with previous work, we find that Cd doping in Ce2RhIn8 tends to rotate the magnetic moment toward the ab plane and lower the energy of the CEF excited states' levels. Interestingly, the presence of Ir also rotates the magnetic moment towards the ab plane although its connection to the CEF overall splitting evolution for the y = 0 samples may not be straightforward. These findings may shed light on the origin of the disordered spin-glass phase on the Ir-rich side of the phase diagram and also indicate that the Ce2MIn8 compounds may not follow exactly the same Rh-Ir CEF effects trend established for the Ce2MIn5 compounds.

20.
Phys Rev B ; 102(11)2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720400

RESUMO

We have performed X-ray powder diffraction, magnetization, electrical resistivity, heat capacity and inelastic neutron scattering (INS) to investigate the physical properties of the intermetallic series of compounds CeCuBi2-xSbx. These compounds crystallize in a tetragonal structure with space group P4∕nmm and present antiferromagnetic transition temperatures ranging from 3.6 K to 16 K. Remarkably, the magnetization easy axis changed along the series, which is closely related to the variations of the tetragonal crystalline electric field (CEF) parameters. This evolution was analyzed using a mean field model, which included an anisotropic nearest-neighbor interactions and the tetragonal CEF Hamiltonian. We obtained the CEF parameters by fitting the magnetic susceptibility data with the constraints given by the INS measurements. More broadly, we discuss how this CEF evolution can affect the Kondo physics and the search for a superconducting state in this family.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa