RESUMO
OBJECTIVE: The pathogenesis of sepsis is complex, and the sepsis-induced systemic proinflammatory phase is one of the key drivers of organ failure and consequent mortality. Akkermansia muciniphila (AKK) is recognised as a functional probiotic strain that exerts beneficial effects on the progression of many diseases; however, whether AKK participates in sepsis pathogenesis is still unclear. Here, we evaluated the potential contribution of AKK to lethal sepsis development. DESIGN: Relative abundance of gut microbial AKK in septic patients was evaluated. Cecal ligation and puncture (CLP) surgery and lipopolysaccharide (LPS) injection were employed to establish sepsis in mice. Non-targeted and targeted metabolomics analysis were used for metabolites analysis. RESULTS: We first found that the relative abundance of gut microbial AKK in septic patients was significantly reduced compared with that in non-septic controls. Live AKK supplementation, as well as supplementation with its culture supernatant, remarkably reduced sepsis-induced mortality in sepsis models. Metabolomics analysis and germ-free mouse validation experiments revealed that live AKK was able to generate a novel tripeptide Arg-Lys-His (RKH). RKH exerted protective effects against sepsis-induced death and organ damage. Furthermore, RKH markedly reduced sepsis-induced inflammatory cell activation and proinflammatory factor overproduction. A mechanistic study revealed that RKH could directly bind to Toll-like receptor 4 (TLR4) and block TLR4 signal transduction in immune cells. Finally, we validated the preventive effects of RKH against sepsis-induced systemic inflammation and organ damage in a piglet model. CONCLUSION: We revealed that a novel tripeptide, RKH, derived from live AKK, may act as a novel endogenous antagonist for TLR4. RKH may serve as a novel potential therapeutic approach to combat lethal sepsis after successfully translating its efficacy into clinical practice.
Assuntos
Sepse , Receptor 4 Toll-Like , Suínos , Humanos , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Sepse/prevenção & controle , Transdução de Sinais , VerrucomicrobiaRESUMO
The emergence of single-cell RNA sequencing enables simultaneous sequencing of thousands of cells, making the analysis of cell population heterogeneity more efficient. In recent years, single-cell RNA sequencing has been used in the investigation of heterogeneous cell populations, cellular developmental trajectories, stochastic gene transcriptional kinetics, and gene regulatory networks, providing strong support in life science research. However, the application of single-cell RNA sequencing in the field of oral science has not been reviewed comprehensively yet. Therefore, this paper reviews the development and application of single-cell RNA sequencing in oral science, including fields of tissue development, teeth and jaws diseases, maxillofacial tumors, infections, etc., providing reference and prospects for using single-cell RNA sequencing in studying the oral diseases, tissue development, and regeneration.
Assuntos
Redes Reguladoras de Genes , Diferenciação Celular/genética , Análise de Sequência de RNARESUMO
Oral submucous fibrosis (OSMF) is a kind of chronic, insidious disease, and it is categorized into potentially malignant disorders (PMD), which poses a global and regional problem to public health. It is considered to be a multifactorial disease, such as due to areca nut chewing, trace element disorders, and genetic susceptibility. However, there is still no unanimous conclusion on its pathogenesis, diagnosis, and treatment strategies. Hence, this article provides a comprehensive review and prospect of OSMF research, providing scholars and clinicians with a better perspective and new ideas for the research and treatment of OSMF.