Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cytogenet Genome Res ; 162(7): 386-390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36893740

RESUMO

Chromosomal abnormalities are a common cause of spontaneous abortions, but conventional detection methods (karyotype, FISH, and chromosomal microarray [CMA]) have limitations, and many cryptic balanced chromosomal rearrangements are difficult to detect. We describe a couple who experienced a missed abortion, studied by CMA. CMA of the abortion tissue detected a 1.62-Mb duplication at 14q11.2 and a 5.09-Mb deletion at 21q11.2q21.1, while the couple seemed to have a normal karyotype. Combining the results of CMA, whole-genome sequencing (WGS) breakpoint analysis, Sanger sequencing, and FISH, we found that the father was a 46,XY,t(14;21)(q11.2;q21.1) balanced translocation carrier. Our results indicate that WGS is an efficient and accurate approach to map breakpoints of cryptic reciprocal balanced translocations undetectable by standard karyotype.


Assuntos
Aberrações Cromossômicas , Translocação Genética , Feminino , Gravidez , Humanos , Translocação Genética/genética , Sequenciamento Completo do Genoma , Cariotipagem
2.
Mol Genet Genomic Med ; 11(8): e2188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488749

RESUMO

BACKGROUND: Zhu-Tokita-Takenouchi-Kim (ZTTK, OMIM 617140) syndrome is a severe multisystem developmental disorder characterized by intellectual disability, developmental delay, cortical malformations, epilepsy, visual problems, musculoskeletal abnormalities, and congenital malformations. ZTTK syndrome is caused by a heterozygous pathogenic variant of the SON gene (NM_138927) at chromosome 21q22.1. The purpose of this study was to investigate the pathogenesis of a 6-month-old Chinese child who exhibited global developmental delay, muscle weakness, malnutrition, weight loss, and strabismus, brain abnormality, immunological system abnormalities. METHODS: The little girl was tested for medical exome sequencing (MES) and mtDNA sequencing in trio. And, the mutation was validated by Sanger sequencing. RESULTS: A novel de novo frameshift variant, c.1845_1870del26 (p.G616Sfs*61), in the SON gene was found in the proband. CONCLUSION: We described a 6-month-old Chinese child with global developmental delay caused by pathogenic de novo mutation c.1845_1870del26 (p.G616Sfs*61) in the SON. Apart from a founder mutation, we reviewed the phenotypic abnormalities and genotypes in 79 individuals. The data showed that global developmental delay is accompanied by other system disorders. Our findings expanded the mutational spectrum of ZTTK syndrome and provide genetic counseling of baby with global developmental delay.


Assuntos
Deficiências do Desenvolvimento , Oftalmopatias , Deficiência Intelectual , Desnutrição , Criança , Feminino , Humanos , Lactente , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , População do Leste Asiático , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Síndrome
3.
Sci Rep ; 13(1): 4193, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918699

RESUMO

Mitochondrial diseases (MDs) were a large group multisystem disorders, attributable in part to the dual genomic control. The advent of massively sequencing has improved diagnostic rates and speed, and was increasingly being used as a first-line diagnostic test. Paediatric patients (aged < 18 years) who underwent dual genomic sequencing were enrolled in this retrospective multicentre study. We evaluated the mitochondrial disease criteria (MDC) and molecular diagnostic yield of dual genomic sequencing. Causative variants were identified in 177 out of 503 (35.2%) patients using dual genomic sequencing. Forty-six patients (9.1%) had mitochondria-related variants, including 25 patients with nuclear DNA (nDNA) variants, 15 with mitochondrial DNA (mtDNA) variants, and six with dual genomic variants (MT-ND6 and POLG; MT-ND5 and RARS2; MT-TL1 and NARS2; MT-CO2 and NDUFS1; MT-CYB and SMARCA2; and CHRNA4 and MT-CO3). Based on the MDC, 15.2% of the patients with mitochondria-related variants were classified as "unlikely to have mitochondrial disorder". Moreover, 4.5% of the patients with non-mitochondria-related variants and 1.43% with negative genetic tests, were classified as "probably having mitochondrial disorder". Dual genomic sequencing in suspected MDs provided a more comprehensive and accurate diagnosis for pediatric patients, especially for patients with dual genomic variants.


Assuntos
Aspartato-tRNA Ligase , Doenças Mitocondriais , Humanos , Criança , Estudos Retrospectivos , Mutação , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Genômica
4.
Int J Lab Hematol ; 43(4): 859-865, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33400392

RESUMO

INTRODUCTION: At present, a variety of molecular detection methods are obtained to diagnose thalassemia accurately. Although exome sequencing or specific panels have been widely used in clinical diagnosis of genetic diseases, the positive rate is about 25%-30%. Because the detection range is limited to exons and splice sites, and the read length is usually 100-150 bp, there are limitations in the detection of globin gene clusters with pseudogenes. METHODS: In this study, seven thalassemia patients were selected to perform whole-genome sequencing (WGS) with long read at 400 bp to make accurate detection for thalassemia deletions. And we used PCR and Sanger sequencing to confirm the gene deletions in the patients. RESULTS: WGS analysis detected a rare 172 kb deletion on the α-globin gene cluster at chr16: 57 009-330 001, 19 kb deletion at chr16: 215 396-234 699, 11 kb deletion at chr16:220 861-231 981; and 27 kb deletion on the ß-globin gene deletion at chr11: 5 222 878-5 250 288, 21.4 kb deletion at chr11: 5 236 361-5 257 771, 78.9 kb deletion at chr11: 5 191 121-5 270 050. All the seven patients carried heterozygous deletions, including three in α-gene cluster, three in ß-gene cluster, and one in both globin clusters. CONCLUSION: Our results indicate that long-read WGS will be beneficial to the diagnosis of genetic diseases with pseudogenes or highly duplicated sequences and will enable clinical geneticists to inform high-risk couples and provide prenatal diagnosis.


Assuntos
Família Multigênica , Talassemia/genética , Adulto , Feminino , Deleção de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Sequenciamento Completo do Genoma
5.
World J Clin Cases ; 9(30): 9302-9309, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34786417

RESUMO

BACKGROUND: The DYNC1H1 gene encodes a part of the dynamic protein, and the protein mutations may further affect the growth and development of neurons, resulting in degeneration of anterior horn cells of the spinal cord, and a variety of clinical phenotypes finally resulting in axonal Charcot-Marie-Tooth disease type 20 (CMT20), mental retardation 13 (MRD13) and spinal muscular atrophy with lower extremity predominant 1 (SMA-LED). The incidence of the disease is low, and it is difficult to diagnose, especially in children. Here, we report a case of DYNC1H1 gene mutation and review the related literature to improve the pediatrician's understanding of DYNC1H1 gene-related disease to make an early correct diagnosis and provide better services for children. CASE SUMMARY: A 4-mo-old Chinese female child with adducted thumbs, high arch feet, and epileptic seizure presented slow response, delayed development, and low limb muscle strength. Electroencephalogram showed abnormal waves, a large number of multifocal sharp waves, sharp slow waves, and multiple spasms with a series of attacks. High-throughput sequencing and Sanger sequencing identified a heterozygous mutation, c.5885G>A (p.R1962H), in the DYNC1H1 gene (NM_001376) of the proband, which was not identified in her parents. Combined with the clinical manifestations and pedigree of this family, this mutation is likely pathogenic based on the American Academy of Medical Genetics and Genomics guidelines. The child was followed when she was 1 year and 2 mo old. The magnetic resonance imaging result was consistent with the findings of white matter myelinated dysplasia and congenital giant gyrus. The extensive neurogenic damage to the extremities was considered, as the results of electromyography showed that the motor conduction velocity and sensory conduction of the nerves of the extremities were not abnormal, and the degree of fit of the children with severe contraction was poor. At present, the child is 80 cm in length and 9 kg in weight, with slender limbs and low muscle strength, and still does not raise her head. She cannot sit or speak. Speech, motor, and mental development was significantly delayed. There is still no effective treatment for this disease. CONCLUSION: We herein report a de novo variant of DYNC1H1 gene, c.5885G>A (p.R1962H), leading to overlapping phenotypes (seizure, general growth retardation, and muscle weakness) of CMT20, MRD13, and SMA-LED, but there is no effective treatment for such condition. Our case enriches the DYNC1H1 gene mutation spectrum and provides an important basis for clinical diagnosis and treatment and genetic counseling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa