Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Ecotoxicol Environ Saf ; 236: 113475, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35364508

RESUMO

Most aquatic ecosystems are at risk of being polluted by new environmental pollutant nanoparticles. As the main food source of zooplankton, the biomass of algae always fluctuates. Cladocerans, an important part of zooplankton, are usually be simultaneously exposed to different abundance of algae and nanoparticles in aquatic environment. To evaluate the combined effects of food abundance and ZnO nanoparticles concentration on the development and early reproductive performance of cladocerans, we exposed Daphnia magna, a common and representative model organism in cladocerans, to the combinations of different abundances of Chlorella pyrenoidosa and different concentrations of ZnO nanoparticles, recorded the key life-history traits, and used multiple models to fit the data. Results showed that high level of ZnO nanoparticles and low abundance Chlorella had an interactively negative effect on the life history of D. magna. When D. magna was exposed to ZnO nanoparticles, some life history traits, such as survival time, body length at maturation, and offspring per female, increased exponentially with the increase of food abundance, and then reached a theoretical maximum value, whereas some other life history traits, such as time to maturation and time to first brood, showed an opposite trend. However, higher Chlorella abundance reduced the negative effect of ZnO nanoparticles on D. magna, but the negative effect could not be eliminated with the increase of food abundance. Below Chlorella 0.30 mg C L-1, food plays a decisive role, while at or above this threshold, ZnO nanoparticles play a decisive role. Therefore, the effect of different ZnO nanoparticles concentrations can be fully reflected only when food is sufficient, and the negative effects of food shortages may mask the toxic effects of ZnO nanoparticles on D. magna. The findings indicated that the effects of food abundance should be considered in evaluating the realistic impact of pollutants on zooplankton.


Assuntos
Chlorella , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Daphnia , Ecossistema , Feminino , Nanopartículas/toxicidade , Reprodução , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Zooplâncton
2.
J Environ Manage ; 297: 113281, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274765

RESUMO

Eutrophication of natural water bodies worldwide has led to cyanobacteria becoming the dominant species in phytoplankton communities, causing serious harm environmentally and economically. Cyanobacterial succession makes effective treatment of cyanobacterial blooms a challenge. Although there are many studies about cyanobacterial dominance and succession, it is still lack of relevant review summarizing the advances on this topic. To control cyanobacterial blooms and manage water quality effectively, we conducted a critical review and drew the following conclusions: (1) cyanobacterial dominance and succession occur from spring to summer, with changes of multiple environmental factors dominated by temperature and nutrients conditions; (2) the cyanobacterial dominance and succession are inherently attributed to the distinctive traits of cyanobacteria including colony formation, gas vesicles, toxin release, and nitrogen fixation; (3) given the current meta-omics explorations on mechanisms of cyanobacterial succession, how to combine the extensive data to draw general conclusions is a challenge in the future; (4) the dominant niche of high temperature-adapted cyanobacteria genera will be further reinforced with global warming and elevated carbon dioxide in the future; (5) considering the causes and future developments of cyanobacterial blooms, the management strategies for controlling cyanobacterial blooms include reducing external nutrient input and removing internal nutrient in sediment, artificial mixing waters to decrease buoyancy of cyanobacteria, and biological control using allelopathy of aquatic plants and/or enhancing zooplankton feeding.


Assuntos
Cianobactérias , Animais , Eutrofização , Aquecimento Global , Lagos , Fitoplâncton , Zooplâncton
3.
J Am Chem Soc ; 142(41): 17384-17392, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32997941

RESUMO

Efficient electro-reduction of CO2 over metal-organic framework (MOF) materials is hindered by the poor contact between thermally synthesized MOF particles and the electrode surface, which leads to low Faradaic efficiency for a given product and poor electrochemical stability of the catalyst. We report a MOF-based electrode prepared via electro-synthesis of MFM-300(In) on an indium foil, and its activity for the electrochemical reduction of CO2 is assessed. The resultant MFM-300(In)-e/In electrode shows a 1 order of magnitude improvement in conductivity compared with that for MFM-300(In)/carbon-paper electrodes. MFM-300(In)-e/In exhibits a current density of 46.1 mA cm-2 at an applied potential of -2.15 V vs Ag/Ag+ for the electro-reduction of CO2 in organic electrolyte, achieving an exceptional Faradaic efficiency of 99.1% for the formation of formic acid. The facile preparation of the MFM-300(In)-e/In electrode, coupled with its excellent electrochemical stability, provides a new pathway to develop efficient electro-catalysts for CO2 reduction.

4.
Environ Sci Technol ; 53(15): 9241-9251, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31268695

RESUMO

Most coastal waters are at risk from microplastics, which vary in concentration and size. Rotifers, as important primary consumers linking primary producers and higher trophic consumers, usually coexist with the harmful alga Phaeocystis and microplastics in coastal waters; this coexistence may interfere with rotifer life-history traits and ingestion of Phaeocystis. To evaluate the effects of microplastics on rotifers, we designed a series of experiments concerning rotifer Brachionus plicatilis life-history traits and rotifer-Phaeocystis (predator-prey) population dynamics under different concentrations and sizes of microplastics. The results showed that small-sized microplastics (0.07 µm) at high levels (≥5 µg mL-1) decreased rotifer survival and reproduction, prolonged the time to maturation, and reduced the body size at maturation, whereas large-sized microplastics (0.7 and 7 µm) had no effect on rotifer life-history traits. For rotifer-Phaeocystis population levels, small-sized microplastics (0.07 µm) significantly delayed the elimination of Phaeocystis by rotifers; this is the first study to test the effects of microplastics on predator-prey dynamics. The results of rotifer-Phaeocystis population dynamics are consistent with the changes in the life-history traits of rotifers and further confirm the negative effects of small-sized microplastics (0.07 µm) on rotifers. These findings help to reveal the effect of pollutants on predator-prey population dynamics.


Assuntos
Haptófitas , Rotíferos , Animais , Plásticos , Dinâmica Populacional , Reprodução
5.
Opt Lett ; 43(11): 2640-2643, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856382

RESUMO

In this Letter, we experimentally demonstrate a 1550-nm direct modulation laser (DML)-based dual-band Nyquist PAM-4 intensity modulation direct detection (IMDD) system using a real-time field programmable gate array (FPGA)-based receiver. Although the sampling rate of the analog-to-digital converter (ADC) used in the receiver is only 5-GSa/s and there is no mixer at the receiver side, the system can successfully realize 22-km SSMF transmission with 20-Gb/s data rate by using super-Nyquist sampling technique. To our knowledge, this is the first experimental demonstration of non-single-band signal transmission over IMDD system based on super-Nyquist sampling technique. In addition, power weighting technique is also applied in the system. The experimental results show that with the help of power weighting technique, the BER of the system can be reduced from 6.1×10-3 to 2.6×10-3.

6.
Environ Sci Technol ; 52(19): 11102-11113, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30176726

RESUMO

Toxic Microcystis bloom is a tough environment problem worldwide. Microcystin is highly toxic and is an easily accumulated secondary metabolite of toxic Microcystis that threatens water safety. Biodegradation of microcystin by protozoan grazing is a promising and efficient biological method, but the mechanism in this process is still unclear. The present study aimed to identify potential pathways involved in resisting and degrading microcystin in flagellates through transcriptomic analyses. A total of 999 unigenes were significantly differentially expressed between treatments with flagellates Ochromonas fed on microcystin-producing Microcystis and microcystin-free Microcystis. These dysregulated genes were strongly associated with translation, carbohydrate metabolism, phagosome, and energy metabolism. Upregulated genes encoding peroxiredoxin, serine/threonine-protein phosphatase, glutathione S-transferase (GST), HSP70, and O-GlcNAc transferase were involved in resisting microcystin. In addition, genes encoding cathepsin and GST and genes related to inducing reactive oxygen species (ROS) were all upregulated, which highly probably linked with degrading microcystin in flagellates. The results of this study provided a better understanding of transcriptomic responses of flagellates to toxic Microcystis as well as highlighted a potential mechanism of biodegrading microcystin by flagellate Ochromonas, which served as a strong theoretical support for control of toxic microalgae by protozoans.


Assuntos
Microcystis , Ochromonas , Perfilação da Expressão Gênica , Microcistinas , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 112(39): E5411-9, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26358652

RESUMO

Intensive rice breeding over the past 50 y has dramatically increased productivity especially in the indica subspecies, but our knowledge of the genomic changes associated with such improvement has been limited. In this study, we analyzed low-coverage sequencing data of 1,479 rice accessions from 73 countries, including landraces and modern cultivars. We identified two major subpopulations, indica I (IndI) and indica II (IndII), in the indica subspecies, which corresponded to the two putative heterotic groups resulting from independent breeding efforts. We detected 200 regions spanning 7.8% of the rice genome that had been differentially selected between IndI and IndII, and thus referred to as breeding signatures. These regions included large numbers of known functional genes and loci associated with important agronomic traits revealed by genome-wide association studies. Grain yield was positively correlated with the number of breeding signatures in a variety, suggesting that the number of breeding signatures in a line may be useful for predicting agronomic potential and the selected loci may provide targets for rice improvement.


Assuntos
Marcadores Genéticos/genética , Variação Genética , Genoma de Planta/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Melhoramento Vegetal/história , Melhoramento Vegetal/métodos , Biologia Computacional , Estudo de Associação Genômica Ampla , História do Século XX , História do Século XXI , Análise de Regressão , Seleção Genética
8.
Environ Sci Technol ; 50(9): 4798-807, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27057760

RESUMO

Global warming and increased nutrient fluxes cause cyanobacterial blooms in freshwater ecosystems. These phenomena have increased the concern for human health and ecosystem services. The mass occurrences of toxic cyanobacteria strongly affect freshwater zooplankton communities, especially the unselective filter feeder Daphnia. However, the molecular mechanisms of cyanobacterial toxicity remain poorly understood. This study is the first to combine the established body growth rate (BGR), which is an indicator of life-history fitness, with differential peptide labeling (iTRAQ)-based proteomics in Daphnia magna influenced by microcystin-producing (MP) and microcystin-free (MF) Microcystis aeruginosa. A significant decrease in BGR was detected when D. magna was exposed to MP or MF M. aeruginosa. Conducting iTRAQ proteomic analyses, we successfully identified and quantified 211 proteins with significant changes in expression. A cluster of orthologous groups revealed that M. aeruginosa-affected differential proteins were strongly associated with lipid, carbohydrate, amino acid, and energy metabolism. These parameters could potentially explain the reduced fitness based on the cost of the substance metabolism.


Assuntos
Microcistinas/metabolismo , Microcystis/metabolismo , Animais , Cianobactérias/metabolismo , Daphnia/metabolismo , Proteômica
9.
Food Res Int ; 189: 114526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876602

RESUMO

The study of the changes in rheological properties and components during the processing of Chinese traditional handmade hollow dried noodle (HHDN) is essential to explaining the excellent quality of HHDN. The dynamic oscillation frequency sweep, stress relaxation, and uniaxial extension characteristics of the dough after kneading, stretching, and resting were investigated at six sampling points during the processing of HHDN. The result showed that stretching led to an increase in G' and G0, and a significant decrease (P < 0.05) in extensibility from 131.02 mm to 57.99 mm. Confocal laser scanning microscopy (CLSM) was used to observe the microstructure of the gluten network, which was destroyed during stretching and restored during resting. Studies of changes in components showed that the stretching process resulted in a decrease in GMP content from 3.24 (g/100 g) to 3.18 (g/100 g), and the resting process resulted in ß-sheets decreasing significantly (P < 0.05). The degree of starch pasting increased significantly (P < 0.05) after stretching. The results of the correlation analysis showed that components changes were highly correlated with the rheological properties during the processing of HHDN.


Assuntos
Manipulação de Alimentos , Reologia , Farinha/análise , Manipulação de Alimentos/métodos , Glutens , Microscopia Confocal , Amido/química , Triticum/química
10.
Environ Sci Technol ; 47(15): 8887-93, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23815380

RESUMO

The copper/zinc superoxide dismutase (Cu/Zn-SOD) is a representative antioxidant enzyme that is responsible for the conversion of superoxide to oxygen and hydrogen peroxide in aerobic organisms. Cu/Zn-SOD mRNAs have been cloned from many species and employed as useful biomarkers of oxidative stresses. In the present study, we cloned Cu/Zn-SOD cDNA from the cladoceran Daphnia magna, analyzed its catalytic properties, and investigated mRNA expression patterns after exposure to known oxidative stressors. The full-length Cu/Zn-SOD of the D. magna (Dm-Cu/Zn-SOD) sequence consisted of 703 bp nucleotides, encoding 178 amino acids, showing well-conserved domains that were required for metal binding and several common characteristics. The deduced amino acid sequence of Dm-Cu/Zn-SOD showed that it shared high identity with Daphnia pulex (88%), Alvinella pompejana (56%), and Cristaria plicata (56%). The phylogenetic analysis indicated that Dm-Cu/Zn-SOD was highly homologous to D. pulex. The variation of Dm-Cu/Zn-SOD mRNA expression was quantified by real-time PCR, and the results indicated that the expression was up-regulated after 48-h exposure to copper, un-ionized ammonia, and low dissolved oxygen. This study shows that the Dm-Cu/Zn-SOD mRNA could be successfully employed as a biomarker of oxidative stress, which is a common mode of toxicity for many other aquatic hazardous materials.


Assuntos
Daphnia/enzimologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/genética
11.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376248

RESUMO

Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10-9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment.

12.
J Hazard Mater ; 437: 129375, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724616

RESUMO

Shallow lakes and ponds, providing essential ecological and environmental services, are simultaneously disrupted by various pollutants of emerging concern (PECs). As a group of PECs, microplastics (MPs) ubiquitously found in freshwater are toxic to a huge variety of organisms. However, the consequence of secondary factors such as food quantity determining MPs toxicity, and the corresponding water safety risks await assessment is still poorly understood. Accordingly, we investigated how MPs across three particle sizes (10, 1 and 0.07 µm) interacted with food abundance to affect survival, reproduction and population performance in the waterflea Daphnia magna. Across multiple population traits, we found that MPs toxicity on Daphnia population performance was attenuated by higher food quantity, but this attenuation size was strongly dependent on MPs size. Path analysis results showed population growth rate was mainly constrained by reduced survival rather than fecundity. Furthermore, the additive null model revealed that the interactive effects of food abundance and MPs were predominately recognized as synergism and trait dependency. The present findings underscore the importance of considering the complexity of interactions that can occur in the wild, when assessing the effects of plastics pollution on population dynamics of the basic trophic level in lakes and ponds.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Daphnia , Lagos , Microplásticos/toxicidade , Plásticos/toxicidade , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 296: 118770, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34974088

RESUMO

The salinization of the global freshwater system caused by various human activities and climate change has become a common problem threatening freshwater biodiversity and resources, which may affect a variety of species of cladocerans at individual and population levels. In order to comprehensively evaluate the impact of salinization on different-sized cladocerans at individual and population levels, we exposed two species of cladocerans with obvious body size difference, Daphnia magna and Moina macrocopa, to seven salinities (0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.12 M), recorded individual life history traits and population growth dynamics, and used multiple mechanistic models to fit the data. At the individual level, the median effect concentration of survival time, total offspring per female, and number of broods of D. magna were significantly higher than those of M. macrocopa. At the population level, the decrease in carrying capacity of D. magna with increasing salinity was significantly less than that of M. macrocopa. At the same salinity treatment, the integrated biomarker response indexes value of M. macrocopa is higher than that of D. magna. Therefore, it was further inferred that the sensitivity of small-sized species M. macrocopa to salinity stress is significantly higher than that of big-sized species D. magna. Thus, freshwater salinization may result in the replacement of smaller salt-intolerant cladocerans with larger salt-tolerant cladocerans, which may have dramatic effects on freshwater communities and ecosystems. Additionally, the increase of salinity had a greater impact on the population level of D. magna and M. macrocopa than on the individual level, indicating that population level of cladocerans was more susceptible to salinity stress. Experiments only based on individuals may underestimate the ecologically related changes in populations and communities, thus understanding the impact of salinization on freshwater systems needs to consider multiple ecological levels.


Assuntos
Cladocera , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Feminino , Água Doce , Humanos , Dinâmica Populacional , Poluentes Químicos da Água/toxicidade
14.
Polymers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406285

RESUMO

In the marine service environment, metal materials have a serious risk of corrosion. The corrosion rate of metal materials will be accelerated by the dual action of temperature change and alkali salt in saline-alkali environment. In order to delay the metal materials' corrosion rate and prolong their service life, this paper used a CeO2-GO (4:1) nanocomposite prepared by the hydrothermal synthesis method to make an anticorrosion coating. The anticorrosion performance was evaluated by stereo microscope and 3D images of the corrosion site were fitted for calculation. The state evolution of the CeO2-GO (4:1)/EP coating immerged in a simulated saline-alkali solution was studied by open circuit potential (OCP), electrochemical alternating current impedance spectroscopy (EIS), Mott-Schottky curve and Tafel curve. The results indicated that CeO2-GO (4:1) nanocomposites exhibited good resistance compared with graphene oxide and nano cerium oxide in a simulated saline-alkali environment. The research in this paper lays a firm theoretical foundation for the application of nano cerium-oxide-modified graphene oxide anticorrosive coating in saline-alkali environment engineering.

15.
J Hazard Mater ; 427: 127913, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865906

RESUMO

Microplastics are an emerging and increasingly serious pollutant in freshwater environment, which have become a threat to freshwater organisms. However, whether microplastics interfere with the responses of organisms to their predators is still unclear. In this study, we investigated the effects of microplastics with tiny different particle size (diameter: 0.7 and 1 µm) on the anti-predation (Rhodeus ocellatus as the predator) defense responses of different body-sized cladocerans, Daphnia pulex and Moina macrocopa. Results showed that microplastics had a size-based inhibitory effect on the induced defense of both D. pulex and M. macrocopa. Specifically, 0.7 µm microplastics had stronger effects on reduced survival time, delayed maturation time, and decreased offspring numbers. In addition, the effects of microplastics also varied with different body-sized cladocerans, i.e. medium-sized cladoceran (D. pulex) were more sensitive than the small-sized one (M. macrocopa) regarding the maturation time. This study illustrated for the first time that the effect of microplastics on induced defense was related to cladoceran species and microplastics size, and further revealed the extensive negative effects of microplastics from the perspective of interspecific relationship.


Assuntos
Cladocera , Microplásticos , Animais , Daphnia , Plásticos/toxicidade , Comportamento Predatório
16.
Sci Total Environ ; 808: 152093, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34863741

RESUMO

Microbes perform a variety of vital functions that are essential for healthy ecosystems, ranging from nutrient recycling, antibiotic production and waste decomposition. In many animals, microbes become an integral part by establishing diverse communities collectively termed as "microbiome/s". Microbiomes defend their hosts against pathogens and provide essential nutrients necessary for their growth and reproduction. The microbiome is a polygenic trait that is dependent on host genotype and environmental variables. However, the alteration of microbiomes by stressful condition and their recovery is still poorly understood. Despite rapid growth in host-associated microbiome studies, very little is known about how they can shape ecological processes. Here, we review current knowledge on the microbiome of Daphnia, its role in fitness, alteration by different stressors, and the ecological and evolutionary aspects of host microbiome interactions. We further discuss how variation in Daphnia physiology, life history traits, and microbiome interactive responses to biotic and abiotic factors could impact patterns of microbial diversity in the total environment, which drives ecosystem function in many freshwater environments. Our literature review provides evidence that microbiome is essential for Daphnia growth, reproduction and tolerance against stressors. Though the core and flexible microbiome of Daphnia is still debatable, it is clear that the Daphnia microbiome is highly dependent on interactions among host genotype, diet and the environment. Different environmental factors alter the microbiome composition and diversity of Daphnia and reduce their fitness. These interactions could have important implications in shaping microbial patterns and their recycling as Daphnia are keystone species in freshwater ecosystem. This review provides a framework for studying these complex relationships to gain a better understanding of the ecological and evolutionary roles of the microbiome.


Assuntos
Características de História de Vida , Microbiota , Animais , Daphnia , Água Doce , Genótipo
17.
Polymers (Basel) ; 14(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36236028

RESUMO

Surface treatment technology is an effective method to reinforce the durability of concrete. In this study, cement-based materials containing industrial solid wastes were modified by hybrid nano-silica (HN), then applied as a novel surface protection material (SPM-HN). The effect of SPM-HN on surface hardness of mortar matrix exposed to seawater was investigated. Further, the microstructure was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mercury intrusion porosimetry (MIP). The results show SPM-HN could significantly enhance the surface hardness of matrix in seawater curing, and the rebound number is increased by 94%.The microstructure analysis demonstrates that the incorporation of HN inhibits the formation of ettringite, thaumasite, and Friedel's salt. In addition, thermodynamic modeling shows the incorporation of hybrid nano-silica could generate more C-S-H, and decrease the maximum volume of Friedel's salt when SPM is exposed to seawater. This research indicates SPM-HN can be applied as a concrete protective layer in the marine environment.

18.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080648

RESUMO

The lamellar structure of graphene oxide and the filling effect of nano-cerium oxide particles together provide a good barrier and stability to coating. In this paper, cerium oxide-graphene oxide (4:1) nanocomposite was prepared by the hydrothermal synthesis method. The effect of cerium oxide-graphene oxide (4:1) nanocomposite on the anticorrosion properties of epoxy coating in simulated acid rain solution was studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), Mott-Schottky curve, Tafel curve, and micromorphological characterization, in order to compare it with pure epoxy coating, graphene oxide epoxy coating, and cerium oxide epoxy coating. The obtained results showed that cerium oxide-graphene oxide (4:1) epoxy coating's protection efficiency was as high as 98.62%. These results indicated that cerium oxide-graphene oxide modified anticorrosive coating had an excellent application prospect in an acid rain environment. Meanwhile, owing to the poor protection ability of epoxy resin and unstably hydrolysis product of CeO2 to the acidic medium, the resistance of CeO2-GO (4:1)/EP coating to acidic corrosive medium was relatively poorer than that of neutral and saline-alkali corrosive medium.

19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1536-1540, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208262

RESUMO

OBJECTIVE: To investigate the relationship between the type of FⅧgene mutation and the development of FⅧ inhibitors in patients with severe haemophilia A (HA). METHODS: The medical records of 172 patients with severe hemophilia A from January 2009 to September 2020 were reviewed. The types of FⅧgene mutations and the production of factor Ⅷ inhibitors were collected and divided into high-risk mutation group ( intron 1 inversions, large deletions, nonsense mutations), low-risk mutation group (missense mutations, small deletions and insertions, splice site mutations) and intron 22 inversions group. The correlation of FⅧgenotype and the production of FⅧ inhibitors in patients with HA were analyzed. RESULTS: Among 172 patients with severe HA, 21 cases(12.21%) developed FⅧ inhibitors. The cumulative incidence of FⅧ inhibitor development was 32%(10/31) in high risk group (75% patients with large deletions, 43% patients with intron 1 inversions, 20% patients with nonsense mutations) and 5%(2/43) in low risk group(6% patients with missense mutations, 5% patients with small deletions or insertions and 0% patient with a splice site mutation) and 9%(9/98) in intron 22 inversions group. Compared with the risk of FⅧ inhibitor development in intron 22 inversions group, the risk of FⅧ inhibitor development in high risk group was higher (OR=4.7, 95% CI: 1.7-13.0), the risk of FⅧ inhibitor development in low risk group was equal (OR=0.5, 95% CI: 0.1-2.3). Compared with the risk of inhibitor development in low risk group, the risk of FⅧ inhibitor development in high risk group was higher (OR=9.8, 95% CI: 2.0-48.7). CONCLUSION: Gene mutations of patients with severe HA in high-risk group which include intron 1 inversions, large deletions, nonsense mutations are a risk factor for FⅧ inhibitor production.


Assuntos
Fator VIII/genética , Hemofilia A , Códon sem Sentido , Análise Mutacional de DNA , Hemofilia A/genética , Humanos , Íntrons , Mutação
20.
Sci Total Environ ; 783: 147154, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34088136

RESUMO

The water bodies are greatly influenced by chemical contamination and global increasing temperature. As an emerging pollutant, microplastics are widely distributed in the freshwater environment, raising concerns regarding their potential toxicity to organisms. Especially for zooplankton filter feeders, many of microplastics are in similar size as their food. Individually, both microplastics and temperature have profound effects on zooplankton populations and their function in ecosystems. However, the strength and direction of their interactive effects are still not clear. Here, we performed a comprehensive biotoxicity assessment providing empirical evidence that the temperature played a key role in shaping the sensitivity of the zooplankter, Daphnia magna, against microplastic toxicity. We found that exposure to microplastics generally caused negative effects on Daphnia individual fitness, such as increased lethality, declined fecundity and reduced population growth rate. This microplastic toxicity was more prominent at 30 °C than at 20 °C, and was rather minor at 15 °C. Moreover, the warming accelerated the ingestion of microplastics, and triggered abnormal ultrastructure of intestinal epithelial cells. In addition, the expression profiling of candidate genes revealed oxidative damage, fecundity impairment and energy retardation by microplastics were amplified with increasing temperature, which may contribute to the enhancement of microplastic toxicity under warming. Given that high temperature fluctuations are becoming more common and difficult to predict, the interactive effects of microplastics and climate warming on Daphnia population dynamics and biomass production may become increasingly aggravated in nature. Collectively, extrapolation for environmental risk assessment studies conducted under different temperature contexts may broaden our knowledge microplastic toxicity on aquatic organism fitness.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Daphnia , Ecossistema , Expressão Gênica , Aptidão Genética , Plásticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa