Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(5): 118, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022488

RESUMO

Regeneration of smooth muscle cells (SMCs) is vital in vascular remodeling. Sca1+ stem/progenitor cells (SPCs) can generate de novo smooth muscle cells after severe vascular injury during vessel repair and regeneration. However, the underlying mechanisms have not been conclusively determined. Here, we reported that lncRNA Metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was down-regulated in various vascular diseases including arteriovenous fistula, artery injury and atherosclerosis. Using genetic lineage tracing mice and veingraft mice surgery model, we found that suppression of lncRNA Malat1 promoted Sca1+ cells to differentiate into SMCs in vivo, resulting in excess SMC accumulation in neointima and vessel stenosis. Genetic ablation of Sca1+ cells attenuated venous arterialization and impaired vascular structure normalization, and thus, resulting in less Malat1 down-regulation. Single cell sequencing further revealed a fibroblast-like phenotype of Sca1+ SPCs-derived SMCs. Protein array sequencing and in vitro assays revealed that SMC regeneration from Sca1+ SPCs was regulated by Malat1 through miR125a-5p/Stat3 signaling pathway. These findings delineate the critical role of Sca1+ SPCs in vascular remodeling and reveal that lncRNA Malat1 is a key regulator and might serve as a novel biomarker or potential therapeutic target for vascular diseases.


Assuntos
RNA Longo não Codificante , Ataxias Espinocerebelares , Doenças Vasculares , Animais , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ataxias Espinocerebelares/metabolismo , Células-Tronco/metabolismo , Doenças Vasculares/metabolismo , Remodelação Vascular/genética
3.
J Mol Cell Cardiol ; 156: 57-68, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745891

RESUMO

Cardiovascular diseases are leading causes that threaten people's life. To investigate cells that are involved in disease development and tissue repair, various technologies have been introduced. Among these technologies, lineage tracing is a powerful tool to track the fate of cells in vivo, providing deep insights into cellular behavior and plasticity. In cardiac diseases, newly formed cardiomyocytes and endothelial cells are found from proliferation of local cells, while fibroblasts and macrophages are originated from diverse cell sources. Similarly, in response to vascular injury, various sources of cells including media smooth muscle cells, endothelium, resident progenitors and bone marrow cells are involved in lesion formation and/or vessel regeneration. In summary, current review summarizes the development of lineage tracing techniques and their utilizations in investigating roles of different cell types in cardiovascular diseases.


Assuntos
Biomarcadores , Doenças Cardiovasculares/etiologia , Linhagem da Célula/genética , Rastreamento de Células/métodos , Suscetibilidade a Doenças , Variação Genética , Miócitos Cardíacos/metabolismo , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Microscopia/métodos , Miócitos Cardíacos/citologia , Miócitos de Músculo Liso/metabolismo , Organogênese/genética , Células-Tronco/metabolismo , Imagem com Lapso de Tempo/métodos
4.
iScience ; 27(6): 110080, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883819

RESUMO

Endothelial cell (EC) damage or dysfunction serves as the initial event in the pathogenesis of various cardiovascular diseases. Progenitor cells have been postulated to be able to differentiate into ECs, facilitate endothelial regeneration, and alleviate vascular pathological remodeling. However, the precise cellular origins and underlying mechanisms remain elusive. Through single-cell RNA sequencing (scRNA-seq), we identified an increasing population of progenitors expressing stem cell antigen 1 (Sca1) during vascular remodeling in mice. Using both mouse femoral artery injury and vein graft models, we determined that Sca1+ cells differentiate into ECs, restored endothelium in arterial and venous remodeling processes. Notably, we have observed that the differentiation of Sca1+ cells into ECs is negatively regulated by the microRNA-145-5p (miR-145-5p)-Erythroblast transformation-specific-related gene (ERG) pathway. Inhibiting miR-145-5p promoted Sca1+ cell differentiation and reduced neointimal formation after vascular injury. Finally, a similar downregulation of miR-145-5p in human arteriovenous fistula was observed comparing to healthy veins.

5.
Theranostics ; 13(7): 2154-2175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153747

RESUMO

Vein graft failure remains a significant clinical problem. Similar to other vascular diseases, stenosis of vein grafts is caused by several cell lines; however, the sources of these cells remain unclear. The objective of this study was to investigate the cellular sources that reshape vein grafts. By analyzing transcriptomics data and constructing inducible lineage-tracing mouse models, we investigated the cellular components of vein grafts and their fates. The sc-RNAseq data suggested that Sca-1+ cells were vital players in vein grafts and might serve as progenitors for multilineage commitment. By generating a vein graft model in which the venae cavae from C57BL/6J wild-type mice were transplanted adjacent to the carotid arteries of Sca-1(Ly6a)-CreERT2; Rosa26-tdTomato mice, we demonstrated that the recipient Sca-1+ cells dominated reendothelialization and the formation of adventitial microvessels, especially at the perianastomotic regions. In turn, using chimeric mouse models, we confirmed that the Sca-1+ cells that participated in reendothelialization and the formation of adventitial microvessels all had a non-bone-marrow origin, whereas bone-marrow-derived Sca-1+ cells differentiated into inflammatory cells in vein grafts. Furthermore, using a parabiosis mouse model, we confirmed that non-bone-marrow-derived circulatory Sca-1+ cells were vital for the formation of adventitial microvessels, whereas Sca-1+ cells derived from local carotid arteries were the source of endothelium restoration. Using another mouse model in which venae cavae from Sca-1 (Ly6a)-CreERT2; Rosa26-tdTomato mice were transplanted adjacent to the carotid arteries of C57BL/6J wild-type mice, we confirmed that the donor Sca-1+ cells were mainly responsible for smooth muscle cells commitment in the neointima, particularly at the middle bodies of vein grafts. In addition, we provided evidence that knockdown/knockout of Pdgfrα in Sca-1+ cells decreased the cell potential to generate SMCs in vitro and decreased number of intimal SMCs in vein grafts. Our findings provided cell atlases of vein grafts, which demonstrated that recipient carotid arteries, donor veins, non-bone-marrow circulation, and the bone marrow provided diverse Sca-1+ cells/progenitors that participated in the reshaping of vein grafts.


Assuntos
Veias , Veias Cavas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Veias/transplante , Veias Cavas/transplante , Túnica Íntima , Neointima
6.
Stem Cell Res Ther ; 12(1): 67, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468212

RESUMO

BACKGROUND: As the most important component of the vascular wall, vascular smooth muscle cells (VSMCs) participate in the pathological process by phenotype transformation or differentiation from stem/progenitor cells. The main purpose of this study was to reveal the role and related molecular mechanism of microRNA-30c-5p (miR-30c-5p) in VSMC differentiation from adventitial progenitor cells expressing stem cell antigen-1(Sca-1). METHODS: In this study, we detected the expression of miR-30c-5p in human normal peripheral arteries and atherosclerotic arteries. In vitro, a stable differentiation model from adventitial Sca-1+ progenitor cells to VSMCs was established using transforming growth factor-ß1 (TGF-ß1) induction and the expression of miR-30c-5p during the process was observed. Then, we explored the effect of miR-30c-5p overexpression and inhibition on the differentiation from adventitial Sca-1+ progenitor cells to VSMCs. The target genes of miR-30c-5p were identified by protein chip and biological analyses and the expression of these genes in the differentiation process were detected. Further, the relationship between the target gene and miR-30c-5p and its effect on differentiation were evaluated. Finally, the co-transfection of miR-30c-5p inhibitor and small interfering RNA (siRNA) of the target gene was implemented to verify the functional target gene of miR-30c-5p during the differentiation from adventitial Sca-1+ progenitor cells to VSMCs, and the dual-luciferase reporter gene assay was performed to detect whether the mRNA 3'untranslated region (UTR) of the target gene is the direct binding site of miR-30c-5p. RESULTS: The expression of miR-30c-5p in the human atherosclerotic arteries was significantly lower than that in the normal arteries. During the differentiation from adventitial Sca-1+ progenitor cells to VSMCs, the expression of VSMC special markers including smooth muscle α-actin (SMαA), smooth muscle-22α (SM22α), smooth muscle myosin heavy chain (SMMHC), and h1-caponin increased accompanied with cell morphology changing from elliptic to fusiform. Meanwhile, the expression of miR-30c-5p decreased significantly. In functional experiments, overexpression of miR-30c-5p inhibited SMαA, SM22α, SMMHC, and h1-caponin at the mRNA and protein levels. In contrast, inhibition of miR-30c-5p promoted the expression of SMαA, SM22α, SMMHC, and h1-caponin. The target gene, osteoprotegerin (OPG), was predicted through protein chip and bioinformatics analyses. Overexpression of miR-30c-5p inhibited OPG expression while inhibition of miR-30c-5p had an opposite effect. Co-transfection experiments showed that low expression of OPG could weaken the promotion effect of miR-30c-5p inhibitor on the differentiation from adventitial Sca-1+ progenitor cells to VSMCs and the dual-luciferase reporter gene assay demonstrated that miR-30c-5p could target the mRNA 3'UTR of OPG directly. CONCLUSIONS: This study demonstrates that miR-30c-5p expression was significantly decreased in atherosclerotic arteries and miR-30c-5p inhibited VSMC differentiation from adventitial Sca-1+ progenitor cells through targeting OPG, which may provide a new target for the treatment of VSMCs-associated diseases.


Assuntos
MicroRNAs , Músculo Liso Vascular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , MicroRNAs/genética , Miócitos de Músculo Liso , Osteoprotegerina , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa