Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 19(1): 381-391, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30565945

RESUMO

Delivery of functional genetic materials into fibroblast cells to manipulate the transgene expression is of great significance in skin gene therapy. Despite numerous polymeric gene delivery systems having been developed, highly safe and efficient fibroblast gene transfection has not yet been achieved. Here, through a new linear oligomer combination strategy, linear poly(ß-amino ester) oligomers are connected by the branching units, forming a new type of poly(ß-amino ester). This new multifunctional linear-branched hybrid poly(ß-amino ester) (LBPAE) shows high-performance fibroblast gene transfection. In human primary dermal fibroblasts (HPDFs) and mouse embryo fibroblasts (3T3s), ultrahigh transgene expression is achieved by LBPAE: up to 3292-fold enhancement in Gaussia luciferase (Gluc) expression and nearly 100% of green fluorescence protein expression are detected. Concurrently, LBPAE is of high in vitro biocompatibility. In depth mechanistic studies reveal that versatile LBPAE can navigate multiple extra- and intracellular barriers involved in the fibroblast gene transfection. More importantly, LBPAE can effectively deliver minicircle DNA encoding  COL7A1 gene (a large and functional gene construct) to substantially upregulate the expression of type VII collagen (C7) in HPDFs, demonstrating its great potential in the treatment of C7-deficiency related genodermatoses such as recessive dystrophic epidermolysis bullosa.


Assuntos
Técnicas de Transferência de Genes , Transfecção , Transgenes/genética , Animais , Ésteres/química , Fibroblastos/metabolismo , Expressão Gênica/genética , Terapia Genética , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Queratinócitos/metabolismo , Camundongos
2.
ACS Biomater Sci Eng ; 6(12): 6926-6937, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320638

RESUMO

Conventional strategies of stem cell injection in treating myocardial infarction (MI) remain a challenge because of low retention rate and insufficient secretion of exogenous cytokines for efficiently improving the microenvironment in the infarcted myocardium, thus hampering the therapeutic effect. Herein, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human VE-cad-Fc fusion protein are fabricated and integrated with human mesenchymal stem cells (hMSCs) to construct functionalized MSC aggregates (FMAs). This fusion protein can effectively promote the paracrine activity of MSCs. The FMA is encapsulated with an injectable hyaluronic acid (HA)-based hydrogel, which is prepared by Schiff base reaction between oxidized HA (OHA) and hydrazided HA (HHA). The OHA@HHA hydrogel loading FMA is injected into the infarcted myocardium of rats, thereby efficiently improving the MI microenvironment in terms of decreased expressions of inflammatory cytokines and upregulated secretion of angiogenic factors compared to the plain hydrogel only and hydrogel encapsulating MSCs. The results of both echocardiography and histological analyses demonstrate the efficient reconstruction of cardiac function and structure and revascularization in the infarct myocardium. The delivery of functionalized stem cell aggregates with an injectable hydrogel offers a promising strategy for treating myocardial infarction and may be expanded to other tissue repair and reconstruction.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Humanos , Ácido Hialurônico , Hidrogéis , Infarto do Miocárdio/terapia , Miocárdio , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa