Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008554

RESUMO

Fibrinogen, an abundant plasma glycoprotein, is involved in the final stage of blood coagulation. Decreased fibrinogen levels, which may be caused by mutations, are manifested mainly in bleeding and thrombotic disorders. Clinically relevant mutations of fibrinogen are listed in the Human Fibrinogen Database. For the αC-connector (amino acids Aα240-410, nascent chain numbering), we have extended this database, with detailed descriptions of the clinical manifestations among members of reported families. This includes the specification of bleeding and thrombotic events and results of coagulation assays. Where available, the impact of a mutation on clotting and fibrinolysis is reported. The collected data show that the Human Fibrinogen Database reports considerably fewer missense and synonymous mutations than the general COSMIC and dbSNP databases. Homozygous nonsense or frameshift mutations in the αC-connector are responsible for most clinically relevant symptoms, while heterozygous mutations are often asymptomatic. Symptomatic subjects suffer from bleeding and, less frequently, from thrombotic events. Miscarriages within the first trimester and prolonged wound healing were reported in a few subjects. All mutations inducing thrombotic phenotypes are located at the identical positions within the consensus sequence of the tandem repeats.


Assuntos
Fibrinogênio/genética , Coagulação Sanguínea/genética , Testes de Coagulação Sanguínea/métodos , Hemorragia/genética , Humanos , Mutação/genética , Trombose/genética
2.
Chirality ; 28(4): 319-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26910793

RESUMO

Fluoxetine is the most prescribed antidepressant chiral drug worldwide. Its enantiomers have a different duration of serotonin inhibition. A novel simple and rapid method for determination of the enantiomeric composition of fluoxetine in pharmaceutical pills is presented. Specifically, emission, excitation, and synchronous fluorescence techniques were employed to obtain the spectral data, which with multivariate calibration methods, namely, principal component regression (PCR) and partial least square (PLS), were investigated. The chiral recognition of fluoxetine enantiomers in the presence of ß-cyclodextrin was based on diastereomeric complexes. The results of the multivariate calibration modeling indicated good prediction abilities. The obtained results for tablets were compared with those from chiral HPLC and no significant differences are shown by Fisher's (F) test and Student's t-test. The smallest residuals between reference or nominal values and predicted values were achieved by multivariate calibration of synchronous fluorescence spectral data. This conclusion is supported by calculated values of the figure of merit.


Assuntos
Antidepressivos/química , Fluoxetina/química , beta-Ciclodextrinas/química , Calibragem , Cromatografia Líquida de Alta Pressão , Espectrometria de Fluorescência , Estereoisomerismo
3.
J Fluoresc ; 25(2): 297-303, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25595059

RESUMO

At present, it is necessary to check the quality of many food products in which the content of coumarins is limited. Since a rapid and simple method for the determination of coumarin (COU), 4-hydroxycoumarin (4HC) and dicoumarol (DC) in tea samples was needed, we developed an alternative option to chromatography, i.e., fluorescence spectroscopy with multivariate calibration. The synchronous fluorescence spectra were recorded at constant wavelength differences 70, 80 and 90 nm from 200 to 400 nm. The different experimental parameters affecting the synchronous fluorescence intensities of the analytes were carefully studied and optimized. Partial least squares (PLS) method and multi linear regression (MLR) were compared on determining the concentrations. The best results were obtained by the PLS method on synchronous fluorescence spectra at Δλ = 90 nm. The results from the analysis of herbal tea Melilotus officinalis by synchronous fluorescence spectroscopy with PLS model are equivalent with the results from HPLC. Fisher F-test and Student's t-test confirmed this finding.


Assuntos
Cumarínicos/análise , Espectrometria de Fluorescência/métodos , Calibragem , Cumarínicos/química , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Modelos Lineares , Análise Multivariada , Solventes/química , Chás de Ervas/análise
4.
Electrophoresis ; 35(20): 3008-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043662

RESUMO

Fast-staining protocols based on the use of Coomassie blue dye for SDS-PAGE separated proteins, represent a quick and simple solution for protein visualization. It has been shown however, that in some cases a phenomenon of missing spots or spot discoloration may be observed in the proteome pattern when the standard fast-staining protocol is used. In this work, it is demonstrated that this occurrence is affected by the biological variability of samples, and therefore, cannot be observed in all samples. Moreover, it is demonstrated that the phenomenon is manifested exclusively in nonfixed gels, and that including a fixation step into the fast-staining protocol prevented this phenomenon. In conclusion, it has been demonstrated that standard Coomassie blue dye based fast staining for SDS-PAGE resolved proteins is affected by the biological variability of samples in nonfixed gels.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Corantes de Rosanilina/química , Eletroforese em Gel Bidimensional , Imidazóis , Proteínas/análise , Proteínas/química , Reprodutibilidade dos Testes
5.
Macromol Biosci ; 24(6): e2300558, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38350051

RESUMO

Prevention of fouling from proteins in blood plasma attracts significant efforts, and great progress is made in identifying surface coatings that display antifouling properties. In particular, poly(ethylene glycol) (PEG) is widely used and dense PEG-like cylindrical brushes of poly[oligo(ethylene glycol) methacrylate] (poly(OEGMA)) can drastically reduce blood plasma fouling. Herein, a comprehensive study of the variation of blood plasma fouling on this surface, including the analysis of the composition of protein deposits on poly(OEGMA) coatings after contact with blood plasma from many different donors, is reported. Correlation between the plasma fouling behavior and protein deposit composition points to the activation of the complement system as the main culprit of dramatically increased and accelerated deposition of blood plasma proteins on this type of antifouling coating, specifically through the classical pathway. These findings are consistent with observations on PEGylated drug carriers and highlight the importance of understanding the potential interactions between antifouling coatings and their environment.


Assuntos
Polietilenoglicóis , Polietilenoglicóis/química , Humanos , Incrustação Biológica/prevenção & controle , Proteínas Sanguíneas/química , Proteínas Sanguíneas/análise , Propriedades de Superfície , Metacrilatos/química , Materiais Revestidos Biocompatíveis/química
6.
Electrophoresis ; 34(13): 1972-5, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23977684

RESUMO

Several new fast staining protocols for the visualization of proteins separated by SDS-PAGE utilizing Coomassie Blue staining (CBS) have been described in literature. The sensitivity of a newly designed staining protocol is usually estimated using 1D SDS-PAGE of serially diluted protein samples. However, this approach is not predictive and satisfactory for 2D SDS-PAGE capable of resolving hundreds or thousands of different proteins in a single analysis. In this work, a new fast staining protocol recently introduced by Dong et al. (PLoS One 2011, 6, e22394) was compared to colloidal CBS. The number of detectable spots in 2D SDS-PAGE of identical blood plasma samples in repeated runs was chosen as a sensitivity criterion. Further, the influence of gel boiling on the subsequent protein identification by MS was investigated. In spite of its advantages, the staining protocol according to Dong et al. (PLoS One 2011, 6, e22394) seems to be less sensitive than colloidal Coomassie staining when the number of detected spots is the evaluating criterion. No obvious influence of gel boiling on the protein identification was observed.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Indicadores e Reagentes/química , Proteínas/análise , Corantes de Rosanilina/química , Sensibilidade e Especificidade , Fatores de Tempo
7.
Proteome Sci ; 11(1): 14, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23566303

RESUMO

BACKGROUND: Refractory anemia and refractory anemia with ringed sideroblasts are two myelodysplastic syndrome (MDS) subgroups linked with anemia. MDS is a group of heterogeneous oncohematological bone marrow disorders characterized by ineffective hematopoiesis, blood cytopenias, and progression of the disease toward acute myeloid leukemia. The aim of this study was to search for plasma proteome changes in MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. RESULTS: A total of 26 patient and healthy donor plasma samples were depleted of fourteen high-abundant plasma proteins, separated with 2D electrophoresis, and statistically processed with Progenesis SameSpots software. 55 significantly differing spots were observed and corresponded to 39 different proteins identified by nanoLC-MS/MS. Changes in the fragments of the inter-alpha-trypsin inhibitor heavy chain H4 protein were observed. Using mass spectrometry-based relative label-free quantification of tryptic peptides, there were differences in alpha-2-HS-glycoprotein peptides, while no differences were observed between the control and patient sample groups for retinol-binding protein 4 peptides. CONCLUSIONS: This study describes plasma proteome changes associated with MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Changes observed in the inter-alpha-trypsin inhibitor heavy chain H4 fragments were in agreement with our previous studies of other MDS subgroups: refractory cytopenia with multilineage dysplasia and refractory anemia with excess blasts subtype 1. Mass spectrometry-based relative quantification of retinol-binding protein 4 peptides has shown that there are differences in the modification of this protein between refractory anemia with excess blasts subtype 1 patients and MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Alpha-2-HS-glycoprotein seems to be a new potential MDS biomarker candidate.

8.
Langmuir ; 29(10): 3388-97, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23391268

RESUMO

The resistance of poly(ethylene glycol) (PEG) against protein adsorption is crucial and has been widely utilized in various biomedical applications. In this work, the complete protein composition of biofilms deposited on PEG-based surfaces from human blood plasma (BP) was identified for the first time using nanoLC-MS/MS, a powerful tool in protein analysis. The mass of deposited BP and the number of different proteins contained in the deposits on individual surfaces decreased in the order of self-assembling monolayers of oligo(ethylene glycol) alkanethiolates (SAM) > poly(ethylene glycol) end-grafted onto a SAM > poly(oligo(ethylene glycol) methacrylate) brushes prepared by surface initiated polymerization (poly(OEGMA)). The BP deposit on the poly(OEGMA) surface was composed only of apolipoprotein A-I, apolipoprotein B-100, complement C3, complement C4-A, complement C4-B, histidine-rich glycoprotein, Ig mu chain C region, fibrinogen (Fbg), and serum albumin (HSA). The total resistance of the surface to the Fbg and HSA adsorption from single protein solutions suggested that their deposition from BP was mediated by some of the other proteins. Current theories of protein resistance are not sufficient to explain the observed plasma fouling. The research focused on the identified proteins, and the experimental approach used in this work can provide the basis for the understanding and rational design of plasma-resistant surfaces.


Assuntos
Plasma/química , Polietilenoglicóis/química , Proteínas/química , Adsorção , Cromatografia Líquida , Humanos , Propriedades de Superfície , Espectrometria de Massas em Tandem
9.
Proteome Sci ; 10(1): 31, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22568928

RESUMO

BACKGROUND: Refractory anemia with excess blasts subtype 1 (RAEB-1) is a subgroup of myelodysplastic syndrome. It represents a heterogeneous group of oncohematological bone marrow diseases, which occur particularly in elderly patients. The aim of this proteomic study was to search for plasma protein alterations in RAEB-1 patients. RESULTS: A total of 24 plasma samples were depleted of fourteen high-abundant plasma proteins, analyzed with 2D SDS-PAGE, compared, and statistically processed with Progenesis SameSpots software. Proteins were identified by nanoLC-MS/MS. Retinol-binding protein 4 and leucine-rich alpha-2-glycoprotein were relatively quantified using mass spectrometry. 56 significantly differing spots were found; and in 52 spots 50 different proteins were successfully identified. Several plasma proteins that changed either in their level or modification have been described herein. The plasma level of retinol-binding protein 4 was decreased, while leucine-rich alpha-2-glycoprotein was modified in RAEB-1 patients. Changes in the inter-alpha-trypsin inhibitor heavy chain H4, altered protein fragmentation, or fragments modifications were observed. CONCLUSIONS: This study describes proteins, which change quantitatively or qualitatively in the plasma of RAEB-1 patients. It is the first report on qualitative changes in the leucine-rich alpha-2-glycoprotein in the RAEB-1 subgroup of myelodysplastic syndrome. Described changes in the composition or modification of inter-alpha-trypsin inhibitor heavy chain H4 fragments in RAEB-1 are in agreement with those changes observed in previous study of refractory cytopenia with multilineage dysplasia, and thus H4 fragments could be a marker specific for myelodysplastic syndrome.

10.
PLoS One ; 17(1): e0262484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35007303

RESUMO

BACKGROUND: Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g., proteins) varies according to pathology, extracellular vesicles may prove a rich source of biomarkers. However, their biological and pathophysiological functions are poorly understood in hematological malignancies. OBJECTIVE: Here, we investigated proteome changes in the exosome-rich fraction of the plasma of myelodysplastic syndrome patients and healthy donors. METHODS: Exosome-rich fraction of the plasma was isolated using ExoQuick™: proteomes were compared and statistically processed; proteins were identified by nanoLC-MS/MS and verified using the ExoCarta and QuickGO databases. Mann-Whitney and Spearman analyses were used to statistically analyze the data. 2D western blot was used to monitor clusterin proteoforms. RESULTS: Statistical analyses of the data highlighted clusterin alterations as the most significant. 2D western blot showed that the clusterin changes were caused by posttranslational modifications. Moreover, there was a notable increase in the clusterin proteoform in the exosome-rich fraction of plasma of patients with more severe myelodysplastic syndrome; this corresponded with a simultaneous decrease in their plasma. CONCLUSIONS: This specific clusterin proteoform seems to be a promising biomarker for myelodysplastic syndrome progression.


Assuntos
Biomarcadores/sangue , Vesículas Extracelulares/metabolismo , Síndromes Mielodisplásicas/patologia , Proteoma/metabolismo , Proteômica/métodos , Idoso , Estudos de Casos e Controles , Cromatografia Líquida , Feminino , Humanos , Masculino , Síndromes Mielodisplásicas/metabolismo , Proteoma/análise , Espectrometria de Massas em Tandem
11.
Cancer Biomark ; 34(3): 485-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275518

RESUMO

BACKGROUND: Leucine-rich alpha-2-glycoprotein (LRG) has been repeatedly proposed as a potential plasma biomarker for myelodysplastic syndrome (MDS). OBJECTIVE: The goal of our work was to establish the total LRG plasma level and LRG posttranslational modifications (PTMs) as a suitable MDS biomarker. METHODS: The total plasma LRG concentration was determined with ELISA, whilst the LRG-specific PTMs and their locations, were established using mass spectrometry and public mass spectrometry data re-analysis. Homology modelling and sequence analysis were used to establish the potential impact of PTMs on LRG functions via their impact on the LRG structure. RESULTS: While the results showed that the total LRG plasma concentration is not a suitable MDS marker, alterations within two LRG sites correlated with MDS diagnosis (p= 0.0011). Sequence analysis and the homology model suggest the influence of PTMs within the two LRG sites on the function of this protein. CONCLUSIONS: We report the presence of LRG proteoforms that correlate with diagnosis in the plasma of MDS patients. The combination of mass spectrometry, re-analysis of publicly available data, and homology modelling, represents an approach that can be used for any protein to predict clinically relevant protein sites for biomarker research despite the character of the PTMs being unknown.


Assuntos
Glicoproteínas , Síndromes Mielodisplásicas , Biomarcadores , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Leucina/metabolismo , Espectrometria de Massas , Síndromes Mielodisplásicas/diagnóstico , Processamento de Proteína Pós-Traducional
12.
Macromol Biosci ; 22(3): e2100460, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959255

RESUMO

Non-specific protein adsorption (fouling) triggers a number of deleterious events in the application of biomaterials. Antifouling polymer brushes successfully suppress fouling, however for some coatings an extremely high variability of fouling for different donors remains unexplained. The authors report that in the case of poly(2-hydroxyethyl methacrylate) (poly(HEMA)) this variability is due to the complement system activation that causes massive acceleration in the fouling kinetics of blood plasma. Using plasma from various donors, the fouling kinetics on poly(HEMA) is analyzed and correlated with proteins identified in the deposits on the surface and with the biochemical compositions of the plasma. The presence of complement components in fouling deposits and concentrations of C3a in different plasmas indicate that the alternative complement pathway plays a significant role in the fouling on poly(HEMA) through the "tick-over" mechanism of spontaneous C3 activation. The generated C3b binds to the poly(HEMA) surface and amplifies complement activation locally. Heat-inactivated plasma prevents accelerated fouling kinetics, confirming the central role of complement activation. The results highlight the need to take into account the variability between individuals when assessing interactions between biomaterials and blood plasma, as well as the importance of the mechanistic insight that can be gained from protein identification.


Assuntos
Incrustação Biológica , Materiais Biocompatíveis/farmacologia , Incrustação Biológica/prevenção & controle , Ativação do Complemento , Humanos , Metacrilatos , Plasma , Propriedades de Superfície
13.
Macromol Biosci ; 22(11): e2200247, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35917216

RESUMO

Whenever an artificial surface comes into contact with blood, proteins are rapidly adsorbed onto its surface. This phenomenon, termed fouling, is then followed by a series of undesired reactions involving activation of complement or the coagulation cascade and adhesion of leukocytes and platelets leading to thrombus formation. Thus, considerable efforts are directed towards the preparation of fouling-resistant surfaces with the best possible hemocompatibility. Herein, a comprehensive hemocompatibility study after heparinized blood contact with seven polymer brushes prepared by surface-initiated atom transfer radical polymerization is reported. The resistance to fouling is quantified and thrombus formation and deposition of blood cellular components on the coatings are analyzed. Moreover, identification of the remaining adsorbed proteins is performed via mass spectroscopy to elucidate their influence on the surface hemocompatibility. Compared with an unmodified glass surface, the grafting of polymer brushes minimizes the adhesion of platelets and leukocytes and prevents the thrombus formation. The fouling from undiluted blood plasma is reduced by up to 99%. Most of the identified proteins are connected with the initial events of foreign body reaction towards biomaterial (coagulation cascade proteins, complement component, and inflammatory proteins). In addition, several proteins that are not previously linked with blood-biomaterial interaction are presented and discussed.


Assuntos
Incrustação Biológica , Trombose , Humanos , Adsorção , Polímeros/química , Incrustação Biológica/prevenção & controle , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Proteínas , Propriedades de Superfície
14.
J Transl Med ; 9: 84, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21631938

RESUMO

BACKGROUND: The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP). METHODS: Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting. RESULTS: Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease. CONCLUSION: The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders.


Assuntos
Apolipoproteína A-I/sangue , Doenças Cardiovasculares/sangue , Proteoma/metabolismo , Idoso , Eletroforese em Gel Bidimensional , Feminino , Humanos , Masculino , Peso Molecular , Análise de Componente Principal , Isoformas de Proteínas/sangue
15.
Proteome Sci ; 9: 64, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21975265

RESUMO

BACKGROUND: Refractory cytopenia with multilineage dysplasia (RCMD) is a subgroup of myelodysplastic syndrome (MDS), which belongs to oncohematological diseases, occurring particularly in elderly patients, and represents a heterogeneous group of bone marrow diseases. The goal of this study was to look for plasma proteins that changed quantitatively or qualitatively in RCMD patients. RESULTS: A total of 46 plasma samples were depleted, proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Sixty-one unique, significantly (p < 0.05, ANOVA) different spots were found; proteins in 59 spots were successfully identified and corresponded to 57 different proteins. Protein fragmentation was observed in several proteins: complement C4-A, complement C4-B, inter-alpha-trypsin inhibitor heavy chain H4, and endorepellin. CONCLUSIONS: This study describes proteins, which change quantitatively or qualitatively in RCMD patients, and represents the first report on significant alterations in C4-A and C4-B complement proteins and ITIH4 fragments in patients with MDS-RCMD.

16.
RSC Adv ; 11(11): 5903-5913, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35423133

RESUMO

Early and late thrombosis remain the most frequent reasons for the failure of synthetic cardiovascular grafts. Long-term hemocompatibility of implanted synthetic grafts can be achieved if a natural living endothelium is formed over its blood-contacting surface. Here we present a modification of a standard expanded polytetrafluorethylene (ePTFE) vessel prosthesis by a controlled preparation of a fibrin mesh enriched with covalently bound heparin and noncovalently bound vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF). Compared to a bare prosthesis, the coated prosthesis showed excellent antithrombogenic properties after contact with heparinized fresh human blood. Human umbilical vein endothelial cells seeded on the inner surface of the coated prosthesis formed a confluent layer in 5 days, whereas only small colonies of cells were scattered on the bare prosthesis. Viability of the cells was promoted mainly by FGF immobilized on the coating. These findings suggest that the coating may prevent acute thrombus formation and support the self-endothelialization of an implanted ePTFE vascular graft in vivo.

17.
J Chromatogr A ; 1653: 462381, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34280790

RESUMO

The rate constants for (L)-N-acetyl homocysteine thiolactone enantiomerization have been obtained from batch-wise studies and by dynamic gas chromatography of racemic mixtures. Results from the batch-wise experiments show that the kinetics of racemization at 150 °C is the same for vials made of glass, silanized glass or Teflon-coated glass so that the vial surface exhibited no effect on the kinetics of racemization. From the temperature dependence of the rate constants the preexponential factor, activation energy, the activation Gibbs energy and activation entropy have been obtained from transition state theory. The catalytic effect of G-DP, G-BP and B-DP GC chiral stationary phases on racemization has been observed and quantified by the values of rate constants; B-DP exhibited the greatest activity. The Eyring activation parameters obtained from batch-wise experiment were compared with theoretical values acquired from quantum chemical modelling. Agreement between the experimental and calculated values of activation Gibbs energy, activation enthalpy and activation entropy is good. The dynamic gas chromatography of racemic mixture on chiral B-DP, G-DP and G-BP capillary columns indicate that the rate constants of forward and reverse reactions are different in chiral environments. The greatest accelerating effect in the process of enantiomerization has been identified for G-BP both in the batch-wise experiments and by the dynamic gas chromatography.


Assuntos
Técnicas de Química Analítica , Homocisteína/análogos & derivados , Técnicas de Química Analítica/métodos , Cromatografia Gasosa , Homocisteína/química , Cinética , Estereoisomerismo , Termodinâmica
18.
Proteome Sci ; 8: 56, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21073729

RESUMO

BACKGROUND: Platelets are small anucleated blood particles that play a key role in the control of bleeding. Platelets need to be activated to perform their functions and participate in hemostasis. The process of activation is accompanied by vast protein reorganization and posttranslational modifications. The goal of this study was to identify changes in proteins in platelets activated by different agonists. Platelets were activated by three different agonists - arachidonic acid, collagen, and thrombin. 2D SDS-PAGE (pI 4-7) was used to separate platelet proteins. Proteomes of activated and resting platelets were compared with each other by Progenesis SameSpots statistical software; and proteins were identified by nanoLC-MS/MS. RESULTS: 190 spots were found to be significantly different. Of these, 180 spots were successfully identified and correspond to 144 different proteins. Five proteins were found that had not previously been identified in platelets: protein CDV3 homolog, protein ETHE1, protein LZIC, FGFR1 oncogene partner 2, and guanine nucleotide-binding protein subunit beta-5. Using spot expression profile analysis, we found two proteins (WD repeat-containing protein 1 and mitochondrial glycerol-3-phosphate dehydrogenase) that may be part of thrombin specific activation or signal transduction pathway(s). CONCLUSIONS: Our results, characterizing the differences within proteins in both activated (by various agonists) and resting platelets, can thus contribute to the basic knowledge of platelets and to the understanding of the function and development of new antiplatelet drugs.

20.
PLoS One ; 15(1): e0227543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995579

RESUMO

Oxidative stress in humans is related to various pathophysiological processes, which can manifest in numerous diseases including cancer, cardiovascular diseases, and Alzheimer's disease. On the atomistic level, oxidative stress causes posttranslational modifications, thus inducing structural and functional changes into the proteins structure. This study focuses on fibrinogen, a blood plasma protein that is frequently targeted by reagents causing posttranslational modifications in proteins. Fibrinogen was in vitro modified by three reagents, namely sodium hypochlorite, malondialdehyde, and 3-morpholinosydnonimine that mimic the oxidative stress in diseases. Newly induced posttranslational modifications were detected via mass spectrometry. Electron microscopy was used to visualize changes in the fibrin networks, which highlight the extent of disturbances in fibrinogen behavior after exposure to reagents. We used molecular dynamics simulations to observe the impact of selected posttranslational modifications on the fibrinogen structure at the atomistic level. In total, 154 posttranslational modifications were identified, 84 of them were in fibrinogen treated with hypochlorite, 51 resulted from a reaction of fibrinogen with malondialdehyde, and 19 were caused by 3-morpholinosydnonimine. Our data reveal that the stronger reagents induce more posttranslational modifications in the fibrinogen structure than the weaker ones, and they extensively alter the architecture of the fibrin network. Molecular dynamics simulations revealed that the effect of posttranslational modifications on fibrinogen secondary structure varies from negligible alternations to serious disruptions. Among the serious disruptions is the oxidation of γR375 resulting in the release of Ca2+ ion that is necessary for appropriate fibrin fiber formation. Folding of amino acids γE72-γN77 into a short α-helix is a result of oxidation of γP76 to glutamic acid. The study describes behaviour of fibrinogen coiled-coil connecter in the vicinity of plasmin and hementin cleavage sites.


Assuntos
Fibrinogênio/química , Fibrinogênio/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa