Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612413

RESUMO

Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Macrófagos , Camundongos Knockout , Poli(ADP-Ribose) Polimerases , Tamoxifeno
2.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613458

RESUMO

During tissue damage caused by infection or sterile inflammation, not only damage-associated molecular patterns (DAMPs), but also resolution-associated molecular patterns (RAMPs) can be activated. These dying cell-associated factors stimulate immune cells localized in the tissue environment and induce the production of inflammatory mediators or specialized proresolving mediators (SPMs). Within the current prospect of science, apoptotic cell death is considered the main initiator of resolution. However, more RAMPs are likely to be released during necrotic cell death than during apoptosis, similar to what has been observed for DAMPs. The inflammatory potential of many regulated forms of necrotic cell death modalities, such as pyroptosis, necroptosis, ferroptosis, netosis, and parthanatos, have been widely studied in necroinflammation, but their possible role in resolution is less considered. In this review, we aim to summarize the relationship between necrotic cell death and resolution, as well as present the current available data regarding the involvement of certain forms of regulated necrotic cell death in necroresolution.


Assuntos
Apoptose , Ferroptose , Humanos , Necrose/metabolismo , Apoptose/fisiologia , Piroptose , Inflamação , Alarminas/metabolismo
3.
Cancer Immunol Immunother ; 69(11): 2193-2207, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32472370

RESUMO

Controlling the balance of pro-inflammatory M1 versus anti-inflammatory M2 macrophages may have paramount therapeutic benefit in cardiovascular diseases, infections, cancer and chronic inflammation. The targeted depletion of different macrophage populations provides a therapeutic option to regulate macrophage-mediated functions. Macrophages are highly sensitive to necroptosis, a newly described regulated cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like pseudokinase. Antagonists of inhibitors of apoptosis proteins (SMAC mimetics) block RIPK1 ubiquitination, while TGF-activated kinase 1 (TAK1) inhibitors prevent the phosphorylation of RIPK1, resulting in increased necroptosis. We compared the sensitivity of monocyte-derived human M1 and M2 cells to various apoptotic and necroptotic signals. The two cell types were equally sensitive to all investigated stimuli, but TAK1 inhibitor induced more intense necroptosis in M2 cells. Consequently, the treatment of co-cultured M1 and M2 cells with TAK1 inhibitor shifted the balance of the two populations toward M1 dominance. Blockage of either Aurora Kinase A or glycogen synthase kinase 3ß, two newly described necroptosis inhibitors, increased the sensitivity of M1 cells to TAK1-inhibitor-induced cell death. Finally, we demonstrated that in vitro differentiated tumor-associated macrophages (TAM-like cells) were as highly sensitive to TAK1 inhibitor-induced necroptosis as M2 cells. Our results indicate that at least two different necroptotic pathways operate in macrophages and the targeted elimination of different macrophage populations by TAK1 inhibitor or SMAC mimetic may provide a therapeutic option to regulate the balance of inflammatory/anti-inflammatory macrophage functions.


Assuntos
Lactonas/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Resorcinóis/farmacologia , Humanos , Macrófagos/metabolismo
4.
Genome Res ; 27(6): 1063-1073, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28341774

RESUMO

The impact of R-loops on the physiology and pathology of chromosomes has been demonstrated extensively by chromatin biology research. The progress in this field has been driven by technological advancement of R-loop mapping methods that largely relied on a single approach, DNA-RNA immunoprecipitation (DRIP). Most of the DRIP protocols use the experimental design that was developed by a few laboratories, without paying attention to the potential caveats that might affect the outcome of RNA-DNA hybrid mapping. To assess the accuracy and utility of this technology, we pursued an analytical approach to estimate inherent biases and errors in the DRIP protocol. By performing DRIP-sequencing, qPCR, and receiver operator characteristic (ROC) analysis, we tested the effect of formaldehyde fixation, cell lysis temperature, mode of genome fragmentation, and removal of free RNA on the efficacy of RNA-DNA hybrid detection and implemented workflows that were able to distinguish complex and weak DRIP signals in a noisy background with high confidence. We also show that some of the workflows perform poorly and generate random answers. Furthermore, we found that the most commonly used genome fragmentation method (restriction enzyme digestion) led to the overrepresentation of lengthy DRIP fragments over coding ORFs, and this bias was enhanced at the first exons. Biased genome sampling severely compromised mapping resolution and prevented the assignment of precise biological function to a significant fraction of R-loops. The revised workflow presented herein is established and optimized using objective ROC analyses and provides reproducible and highly specific RNA-DNA hybrid detection.


Assuntos
Linfócitos T CD4-Positivos/química , Mapeamento Cromossômico/métodos , DNA/isolamento & purificação , Imunoprecipitação/métodos , RNA/isolamento & purificação , Artefatos , Pareamento de Bases , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Misturas Complexas/química , DNA/genética , DNA/metabolismo , Enzimas de Restrição do DNA/química , Fixadores/química , Formaldeído/química , Humanos , Células Jurkat , Extração Líquido-Líquido/métodos , Hibridização de Ácido Nucleico , Cultura Primária de Células , RNA/genética , RNA/metabolismo , Curva ROC , Extração em Fase Sólida/métodos
6.
Biomedicines ; 11(6)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37371616

RESUMO

Immune responses are highly complex and intricately regulated processes involving immune and non-immune cells in close direct and indirect contact with each other. These cells are highly sensitive to environmental signals, including factors derived from microbiota. Here, we demonstrate that the human microbiota member Lactobacillus casei (L. casei)-derived cell-free supernatant (CFS) enhances the sensitivity of mesenchymal-stromal-cell-like (MSCI) cells to viral stimuli and induces the development of dendritic cells (DCs) with anti-inflammatory and antiviral properties via pretreated MSCl cells. Our results showed that the production of INFß and CXCL10 by MSCl cells upon viral stimulation was dependent on the presence of L. casei-derived extracellular vesicles in CFS during pretreatment. Moreover, L. casei CFS and/or poly (I:C)-conditioned MSCI cells altered the differentiation process of freshly isolated monocytes, as well as the developing DCs' phenotype and functional activities, such as cytokine and chemokine secretion. Taken together, L. casei CFS contains factors which contribute to the pronounced antiviral response of MSCI cells, avoiding the development of inflammation via the induction of differentiation of anti-inflammatory DCs that retain their antiviral properties.

7.
Front Immunol ; 14: 1169560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465676

RESUMO

Most of the leading causes of death, such as cardiovascular diseases, cancer, dementia, neurodegenerative diseases, and many more, are associated with sterile inflammation, either as a cause or a consequence of these conditions. The ability to control the progression of inflammation toward tissue resolution before it becomes chronic holds significant clinical potential. During sterile inflammation, the initiation of inflammation occurs through damage-associated molecular patterns (DAMPs) in the absence of pathogen-associated molecules. Macrophages, which are primarily localized in the tissue, play a pivotal role in sensing DAMPs. Furthermore, macrophages can also detect and respond to resolution-associated molecular patterns (RAMPs) and specific pro-resolving mediators (SPMs) during sterile inflammation. Macrophages, being highly adaptable cells, are particularly influenced by changes in the microenvironment. In response to the tissue environment, monocytes, pro-inflammatory macrophages, and pro-resolution macrophages can modulate their differentiation state. Ultimately, DAMP and RAMP-primed macrophages, depending on the predominant subpopulation, regulate the balance between inflammatory and resolving processes. While sterile injury and pathogen-induced reactions may have distinct effects on macrophages, most studies have focused on macrophage responses induced by pathogens. In this review, which emphasizes available human data, we illustrate how macrophages sense these mediators by examining the expression of receptors for DAMPs, RAMPs, and SPMs. We also delve into the signaling pathways induced by DAMPs, RAMPs, and SPMs, which primarily contribute to the regulation of macrophage differentiation from a pro-inflammatory to a pro-resolution phenotype. Understanding the regulatory mechanisms behind the transition between macrophage subtypes can offer insights into manipulating the transition from inflammation to resolution in sterile inflammatory diseases.


Assuntos
Inflamação , Macrófagos , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Transdução de Sinais , Alarminas/metabolismo
8.
Cancer Chemother Pharmacol ; 91(1): 53-66, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36451019

RESUMO

Macrophages and dendritic cells (DCs) are important contributors to anti-tumor immune responses. However, these highly plastic cells are also the primary targets of tumor manipulation, which may result in the development of tumor-promoting subtypes. The effect of chemotherapeutic agents on tumor cells is an area of intense study, but little is known about their effects on innate immune cells.We investigated the effects of four chemotherapeutic drugs (two platinum-based agents; oxaliplatin and cisplatin, and two anthracyclines; doxorubicin and epirubicin) on the differentiation, function, and viability of macrophages and DCs. Macrophages and DCs were differentiated from monocytes in the presence of these chemotherapeutic drugs and we compared their cell surface receptor expression, cytokine production, and chemotactic- and T-cell-polarizing ability.We have shown that differentiation in the presence of anthracyclines dose-dependently increases CTLA-4 expression in DCs. Antineoplastic agent-driven differentiation strongly modified the CCL2- or CCL5-induced chemotactic activity of both macrophages and DCs. DCs differentiated in the presence of high-dose cisplatin and a low dose of epirubicin promoted regulatory T-cell development, whereas oxaliplatin at specific doses induced both DCs and macrophages to enhance cytotoxic T-cell responses. Furthermore, we found that inflammatory macrophages are more sensitive to doxorubicin-induced cell death than their counterparts.In summary, our results confirm that chemotherapeutic agents acting on a similar basis may have different effects on the anti-tumor immune response. Treatment with optimal dose, combinations, and timing of chemotherapy may determine tumor immunity and the metastatic potential of tumors.


Assuntos
Antineoplásicos , Monócitos , Humanos , Monócitos/metabolismo , Cisplatino/farmacologia , Oxaliplatina/farmacologia , Oxaliplatina/metabolismo , Epirubicina , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Doxorrubicina/farmacologia , Diferenciação Celular , Antibióticos Antineoplásicos/farmacologia , Imunidade , Células Cultivadas , Células Dendríticas
9.
Front Immunol ; 14: 1168635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215144

RESUMO

Introduction: Macrophages significantly contribute to the regulation of vessel formation under physiological and pathological conditions. Although the angiogenesis-regulating role of alternatively polarized macrophages is quite controversial, a growing number of evidence shows that they can participate in the later phases of angiogenesis, including vessel sprouting and remodeling or regression. However, the epigenetic and transcriptional regulatory mechanisms controlling this angiogenesis-modulating program are not fully understood. Results: Here we show that IL-4 can coordinately regulate the VEGFA-VEGFR1 (FLT1) axis via simultaneously inhibiting the proangiogenic Vegfa and inducing the antiangiogenic Flt1 expression in murine bone marrow-derived macrophages, which leads to the attenuated proangiogenic activity of alternatively polarized macrophages. The IL-4-activated STAT6 and IL-4-STAT6 signaling pathway-induced EGR2 transcription factors play a direct role in the transcriptional regulation of the Vegfa-Flt1 axis. We demonstrated that this phenomenon is not restricted to the murine bone marrow-derived macrophages, but can also be observed in different murine tissue-resident macrophages ex vivo and parasites-elicited macrophages in vivo with minor cell type-specific differences. Furthermore, IL-4 exposure can modulate the hypoxic response of genes in both murine and human macrophages leading to a blunted Vegfa/VEGFA and synergistically induced Flt1/FLT1 expression. Discussion: Our findings establish that the IL-4-activated epigenetic and transcriptional program can determine angiogenesis-regulating properties in alternatively polarized macrophages under normoxic and hypoxic conditions.


Assuntos
Interleucina-4 , Fator A de Crescimento do Endotélio Vascular , Humanos , Camundongos , Animais , Interleucina-4/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Cell Death Dis ; 13(5): 423, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501340

RESUMO

Distinct types of immune responses are activated by infections, which cause the development of type I, II, or III inflammation, regulated by Th1, Th2, Th17 helper T cells and ILC1, ILC2 and ILC3 cells, respectively. While the classification of immune responses to different groups of pathogens is widely accepted, subtypes of the immune response elicited by sterile inflammation have not yet been detailed. Necroinflammation is associated with the release of damage-associated molecular patterns (DAMP) from dying cells. In this review, we present that the distinct molecular mechanisms activated during apoptosis, necroptosis, pyroptosis, and ferroptosis lead to the release of different patterns of DAMPs and their suppressors, SAMPs. We summarize the currently available data on how regulated cell death pathways and released DAMPs and SAMPs direct the differentiation of T helper and ILC cells. Understanding the subtypes of necroinflammation can be crucial in developing strategies for the treatment of sterile inflammatory diseases caused by cell death processes.


Assuntos
Imunidade Inata , Linfócitos , Alarminas/metabolismo , Morte Celular/fisiologia , Humanos , Inflamação , Linfócitos/metabolismo
11.
PLoS One ; 17(10): e0274056, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36194602

RESUMO

Developing dendritic cells (DCs) from monocytes is a sensitively regulated process. One possible way for cancers to avoid immune recognition and antitumor response is the modulation of DC differentiation. Although several studies are available on the examination of tumor-associated macrophages, a comprehensive analysis focusing on the effects of tumor-formed DCs is not known to date. We provide a comparative analysis of the tumor-edited-monocyte derived DCs differentiated in the presence of adenocarcinomas (MDA, HT29, HeLa)- and primary (WM278, WM983A) or metastatic (WM1617, WM983B) melanomas. The immunomodulatory effect of tumors is mediated at least partly by secreted mediators. We investigated the impact of tumor cell-derived conditioned media on the differentiation of DCs from CD14+ monocytes, sequentially determining the phenotype, cytokine production, phagocytic, and the T cell polarizing capacity of moDCs. We completed our observations by analyzing our data with bioinformatic tools to provide objective correlations between phenotypical and functional properties of different tumor-educated moDCs. The correlation analysis revealed significant differences in the characteristics of adenocarcinomas- or melanomas-edited moDCs. We highlight the functional differences in the properties of moDCs differentiated in the presence of various cancer cell lines. We offer new information and options for the in vitro differentiation protocols of various tumor-conditioned moDCs. Our results confirm that various immunomodulatory properties of different tumor cell lines result in multiple manipulations of DC differentiation.


Assuntos
Adenocarcinoma , Melanoma , Adenocarcinoma/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Células Dendríticas , Humanos , Melanoma/metabolismo , Monócitos/metabolismo
12.
Immunobiology ; 226(1): 152032, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316542

RESUMO

Dendritic cells (DCs), as potent phagocytes engulf dead cells and present peptide fragments of tumor antigens or pathogens derived from infected cells to naïve CD8+ T-lymphocytes. Dendritic cells can also induce apoptosis in target cells, thus getting an opportunity to sample their microenvironment. Here, we present that the supernatants of LPS- or CL075-activated DCs induced cell death in different cell lines, but during the differentiation to mature DCs, they lost their cytotoxic potential. Dexamethasone-pre-treated tolerogenic DCs induced less intensive death indicating that the tissue microenvironment can downregulate DC-mediated killing. Exploring the signaling of DC-induced cell death, we observed that the supernatant of activated DCs induced TNF-dependent cell death, since TNF antagonist blocked the cytotoxic activity of DCs, contrary to inhibitors of Fas and TRAIL receptors. We identified that the DC-induced killing is at least partially a RIPK1-dependent process, as RIPK1 positive target cells were more susceptible to DC-induced cell death than their RIPK1 deficient counterparts. Moreover, both the elevated phosphorylation of RIPK1 and the increase in RIPK1-caspase-8 interaction in target cells suggest that RIPK1-mediated signals contribute to DC supernatant-induced cell death. We also proved that the cytotoxic activity of DC-derived supernatant induced apoptosis in the target cells and not necroptosis, as it was completely abrogated with the pan caspase inhibitor (Z-VAD), while the necroptosis inhibitor (Nec-1) had no effect. Our work revealed that the supernatant of activated DCs induces the apoptosis of target cells in a RIPK1-dependent manner. This phenomenon could be relevant for the initiation of cross-presentation and may broaden the plethora of cytotoxic mechanisms acting against tumor cells.


Assuntos
Células Dendríticas/imunologia , Neoplasias/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Morte Celular , Apresentação Cruzada , Citotoxicidade Imunológica , Células HT29 , Humanos , Tolerância Imunológica , Oligopeptídeos/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
13.
iScience ; 24(4): 102312, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33855282

RESUMO

Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies.

14.
J Extracell Vesicles ; 10(11): e12140, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34520123

RESUMO

In this study we tested whether a protein corona is formed around extracellular vesicles (EVs) in blood plasma. We isolated medium-sized nascent EVs of THP1 cells as well as of Optiprep-purified platelets, and incubated them in EV-depleted blood plasma from healthy subjects and from patients with rheumatoid arthritis. EVs were subjected to differential centrifugation, size exclusion chromatography, or density gradient ultracentrifugation followed by mass spectrometry. Plasma protein-coated EVs had a higher density compared to the nascent ones and carried numerous newly associated proteins. Interactions between plasma proteins and EVs were confirmed by confocal microscopy, capillary Western immunoassay, immune electron microscopy and flow cytometry. We identified nine shared EV corona proteins (ApoA1, ApoB, ApoC3, ApoE, complement factors 3 and 4B, fibrinogen α-chain, immunoglobulin heavy constant γ2 and γ4 chains), which appear to be common corona proteins among EVs, viruses and artificial nanoparticles in blood plasma. An unexpected finding of this study was the high overlap of the composition of the protein corona with blood plasma protein aggregates. This is explained by our finding that besides a diffuse, patchy protein corona, large protein aggregates also associate with the surface of EVs. However, while EVs with an external plasma protein cargo induced an increased expression of TNF-α, IL-6, CD83, CD86 and HLA-DR of human monocyte-derived dendritic cells, EV-free protein aggregates had no effect. In conclusion, our data may shed new light on the origin of the commonly reported plasma protein 'contamination' of EV preparations and may add a new perspective to EV research.


Assuntos
Vesículas Extracelulares/metabolismo , Espectrometria de Massas/métodos , Plasma/metabolismo , Coroa de Proteína/metabolismo , Feminino , Humanos , Masculino
15.
Stem Cells Int ; 2020: 8847038, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33144864

RESUMO

PURPOSE: This study is aimed at investigating the phenotype, differentiation potential, immunomodulatory properties, and responsiveness of saphenous vein vessel wall-derived mesenchymal stromal cells (SV-MSCs) to various TLR ligands and proinflammatory cytokines, as well as comparing their features to those of their bone marrow-derived counterparts (BM-MSCs). METHODS: SV-MSCs were isolated by enzymatic digestion of the saphenous vein vessel wall. Phenotype analysis was carried out by flow cytometry and microscopy, whereas adipogenic, chondrogenic, and osteogenic differentiation potentials were tested in in vitro assays. For comparative analysis, the expression of different stemness, proliferation, and differentiation-related genes was determined by Affymetrix gene array. To compare the immunomodulatory properties of SV-MSCs and BM-MSCs, mixed lymphocyte reaction was applied. To investigate their responses to various activating stimuli, MSCs were treated with TLR ligands (LPS, PolyI:C) or proinflammatory cytokines (TNFα, IL-1ß, IFNγ), and the expression of various early innate immune response-related genes was assessed by qPCR, while secretion of selected cytokines and chemokines was measured by ELISA. RESULTS: The isolated SV-MSCs were able to differentiate into bone, fat, and cartilage cells/direction in vitro. SV-MSCs expressed the most important MSC markers (CD29, CD44, CD73, CD90, and CD105) and shared almost identical phenotypic characteristics with BM-MSCs. Their gene expression pattern and activation pathways were close to those of BM-MSCs. SV-MSCs showed better immunosuppressive activity inhibiting phytohemagglutinin-induced T lymphocyte proliferation in vitro than BM-MSCs. Cellular responses to treatments mimicking inflammatory conditions were comparable in the bone marrow- and saphenous vein-derived MSCs. Namely, similar to BM-MSCs, SV-MSCs secreted increased amount of IL-6 and IL-8 after 12- or 24-hour treatment with LPS, PolyI:C, TNFα, or IL-1ß, compared to untreated controls. Interestingly, a different CXCL-10/IP-10 secretion pattern could be observed under inflammatory conditions in the two types of MSCs. CONCLUSION: Based on our results, cells isolated from saphenous vein vessel wall fulfilled the ISCT's (International Society for Cellular Therapy) criteria for multipotent mesenchymal stromal cells, and no significant differences in the phenotype, gene expression pattern, and responsiveness to inflammatory stimuli could be observed between BM-MSCs and SV-MSCs, while the latter cells have more potent immunosuppressive activity in vitro. Further functional assays have to be performed to reveal whether SV-MSCs could be useful for certain regenerative therapeutic applications or tissue engineering purposes.

16.
PLoS One ; 15(4): e0231223, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32298286

RESUMO

We observed prominent effects of doxorubicin (Dox), an anthracycline widely used in anti-cancer therapy, on the aggregation and intracellular distribution of both partners of the H2A-H2B dimer, with marked differences between the two histones. Histone aggregation, assessed by Laser Scanning Cytometry via the retention of the aggregates in isolated nuclei, was observed in the case of H2A. The dominant effect of the anthracycline on H2B was its massive accumulation in the cytoplasm of the Jurkat leukemia cells concomitant with its disappearance from the nuclei, detected by confocal microscopy and mass spectrometry. A similar effect of the anthracycline was observed in primary human lymphoid cells, and also in monocyte-derived dendritic cells that harbor an unusually high amount of H2B in their cytoplasm even in the absence of Dox treatment. The nucleo-cytoplasmic translocation of H2B was not affected by inhibitors of major biochemical pathways or the nuclear export inhibitor leptomycin B, but it was completely diminished by PYR-41, an inhibitor with pleiotropic effects on protein degradation pathways. Dox and PYR-41 acted synergistically according to isobologram analyses of cytotoxicity. These large-scale effects were detected already at Dox concentrations that may be reached in the typical clinical settings, therefore they can contribute both to the anti-cancer mechanism and to the side-effects of this anthracycline.


Assuntos
Citoplasma/metabolismo , Doxorrubicina/farmacologia , Histonas/metabolismo , Transporte Ativo do Núcleo Celular , Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células , Ácidos Graxos Insaturados/metabolismo , Humanos , Células Jurkat , Citometria de Varredura a Laser , Espectrometria de Massas , Microscopia Confocal , Monócitos/citologia
17.
Cell Death Dis ; 10(11): 860, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719524

RESUMO

Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.


Assuntos
Necroptose/genética , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Apoptose/genética , Morte Celular/genética , Humanos , Inflamação/genética , Inflamação/patologia , Processamento de Proteína Pós-Traducional/genética
18.
PLoS One ; 14(11): e0224936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31747397

RESUMO

The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential.


Assuntos
Cromatina/química , DNA/química , Substâncias Intercalantes/farmacologia , Conformação de Ácido Nucleico , Bibliotecas de Moléculas Pequenas/farmacologia , Membrana Celular/metabolismo , Etídio/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Nucleossomos/química , Transcrição Gênica
19.
Front Immunol ; 9: 3070, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622542

RESUMO

Recent advances reveal that metabolic reprogramming is required for adequate antiviral responses of dendritic cells (DCs) that possess the capacity to initiate innate and adaptive immune responses. Several reports indicate that Toll-like receptor (TLR) stimulation of DCs is accompanied by a rapid induction of glycolysis; however, the metabolic requirements of retinoic-acid inducible gene I (RIG-I)-like receptor (RLR) activation have not defined either in conventional DCs (cDCs) or in plasmacytoid DCs (pDCs) that are the major producers of type I interferons (IFN) upon viral infections. To sense viruses and trigger an early type I IFN response, pDCs rely on endosomal TLRs, whereas cDCs employ cytosolic RIG-I, which is constitutively present in their cytoplasm. We previously found that RIG-I is upregulated in pDCs upon endosomal TLR activation and contributes to the late phase of type I IFN responses. Here we report that TLR9-driven activation of human pDCs leads to a metabolic transition to glycolysis supporting the production of type I IFNs, whereas RIG-I-mediated antiviral responses of pDCs do not require glycolysis and rather rely on oxidative phosphorylation (OXPHOS) activity. In particular, TLR9-activated pDCs show increased extracellular acidification rate (ECAR), lactate production, and upregulation of key glycolytic genes indicating an elevation in glycolytic flux. Furthermore, administration of 2-deoxy-D-glucose (2-DG), an inhibitor of glycolysis, significantly impairs the TLR9-induced secretion of type I IFNs by human pDCs. In contrast, RIG-I stimulation of pDCs does not result in any alterations of ECAR, and type I IFN production is not inhibited but rather promoted by 2-DG treatment. Moreover, pDCs activated via TLR9 but not RIG-I in the presence of 2-DG are impaired in their capacity to prime allogeneic naïve CD8+ T cell proliferation. Interestingly, human monocyte-derived DCs (moDC) triggered via RIG-I show a commitment to glycolysis to promote type I IFN production and T cell priming in contrast to pDCs. Our findings reveal for the first time, that pDCs display a unique metabolic profile; TLR9-driven but not RIG-I-mediated activation of pDCs requires glycolytic reprogramming. Nevertheless, the metabolic signature of RIG-I-stimulated moDCs is characterized by glycolysis suggesting that RIG-I-induced metabolic alterations are rather cell type-specific and not receptor-specific.


Assuntos
Reprogramação Celular/imunologia , Proteína DEAD-box 58/metabolismo , Células Dendríticas/imunologia , Metaboloma/imunologia , Monócitos/imunologia , Antimetabólitos/farmacologia , Buffy Coat , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Proliferação de Células , Proteína DEAD-box 58/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Voluntários Saudáveis , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Metaboloma/efeitos dos fármacos , Monócitos/metabolismo , Fosforilação Oxidativa , Cultura Primária de Células , Receptores Imunológicos , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Regulação para Cima
20.
Stem Cells Dev ; 24(15): 1805-16, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25808140

RESUMO

The major reservoir of human multipotent mesenchymal stem/stromal cells (MSCs) is the bone marrow (BM) with the capability to control hematopoietic stem cell development. The regenerative potential of MSCs is associated with enhanced endogenous repair and healing mechanisms that modulate inflammatory responses. Our previous results revealed that MSC-like (MSCl) cells derived from pluripotent human embryonic stem cells resemble BM-derived MSCs in morphology, phenotype, and differentiating potential. In this study, we investigated the effects of MSCl cells on the phenotype and functions of dendritic cells (DCs). To assess how antiviral immune responses could be regulated by intracellular pattern recognition receptors of DCs in the presence of MSCl cells, we activated DCs with the specific ligands of retinoic acid-inducible gene-I (RIG-I) helicases and found that activated DCs cocultured with MSCl cells exhibited reduced expression of CD1a and CD83 cell surface molecules serving as phenotypic indicators of DC differentiation and activation, respectively. However, RIG-I-mediated stimulation of DCs through specific ligands in the presence of MSCl cells resulted in significantly higher expression of the costimulatory molecules, CD80 and CD86, than in the presence of BM-MSCs. In line with these results, the concentration of IL-6, IL-10, and CXCL8 was increased in the supernatant of the DC-MSCl cocultures, while the secretion of TNF-α, CXCL10, IL-12, and IFNγ was reduced. Furthermore, the concerted action of mechanisms involved in the regulation of DC migration resulted in the blockade of cell migration, indicating altered DC functionality mediated by MSCl cell-derived signals and mechanisms resulting in a suppressive microenvironment.


Assuntos
Comunicação Celular/imunologia , Células Dendríticas/imunologia , Células-Tronco Mesenquimais/imunologia , Monócitos/imunologia , Transdução de Sinais/imunologia , Antígenos CD/imunologia , Linhagem Celular , Citocinas/imunologia , Células Dendríticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Monócitos/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa