Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroimage ; 245: 118747, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852277

RESUMO

In this paper, we analyze spatial sampling of electro- (EEG) and magnetoencephalography (MEG), where the electric or magnetic field is typically sampled on a curved surface such as the scalp. By simulating fields originating from a representative adult-male head, we study the spatial-frequency content in EEG as well as in on- and off-scalp MEG. This analysis suggests that on-scalp MEG, off-scalp MEG and EEG can benefit from up to 280, 90 and 110 spatial samples, respectively. In addition, we suggest a new approach to obtain sensor locations that are optimal with respect to prior assumptions. The approach also allows to control, e.g., the uniformity of the sensor locations. Based on our simulations, we argue that for a low number of spatial samples, model-informed non-uniform sampling can be beneficial. For a large number of samples, uniform sampling grids yield nearly the same total information as the model-informed grids.


Assuntos
Eletroencefalografia/normas , Magnetoencefalografia/normas , Adulto , Humanos , Masculino , Modelos Neurológicos , Couro Cabeludo , Processamento de Sinais Assistido por Computador
2.
Nano Lett ; 15(10): 6848-54, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26414396

RESUMO

The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.


Assuntos
Sondas Moleculares , Pontos Quânticos , Semicondutores , Luminescência
3.
Biomed Phys Eng Express ; 6(1): 015016, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438604

RESUMO

Superconducting QUantum-Interference Devices (SQUIDs) make magnetic resonance imaging (MRI) possible in ultra-low microtesla-range magnetic fields. In this work, we investigate the design parameters affecting the signal and noise performance of SQUID-based sensors and multichannel magnetometers for MRI of the brain. Besides sensor intrinsics, various noise sources along with the size, geometry and number of superconducting detector coils are important factors affecting the image quality. We derive figures of merit based on optimal combination of multichannel data, analyze different sensor array designs, and provide tools for understanding the signal detection and the different noise mechanisms. The work forms a guide to making design decisions for both imaging- and sensor-oriented readers.


Assuntos
Encéfalo/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Supercondutividade , Humanos
4.
IEEE Trans Med Imaging ; 38(6): 1317-1327, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908195

RESUMO

With a hybrid magnetoencephalography (MEG)-MRI device that uses the same sensors for both modalities, the co-registration of MRI and MEG data can be replaced by an automatic calibration step. Based on the highly accurate signal model of ultra-low-field (ULF) MRI, we introduce a calibration method that eliminates the error sources of traditional co-registration. The signal model includes complex sensitivity profiles of the superconducting pickup coils. In the ULF MRI, the profiles are independent of the sample and therefore well-defined. In the most basic form, the spatial information of the profiles, captured in parallel ULF-MR acquisitions, is used to find the exact coordinate transformation required. We assessed our calibration method by simulations assuming a helmet-shaped pickup-coil-array geometry. Using a carefully constructed objective function and sufficient approximations, even with low-SNR images, sub-voxel and sub-millimeter calibration accuracy were achieved. After the calibration, distortion-free MRI and high spatial accuracy for MEG source localization can be achieved. For an accurate sensor-array geometry, the co-registration and associated errors are eliminated, and the positional error can be reduced to a negligible level.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Algoritmos , Calibragem , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
5.
J Phys Chem B ; 111(21): 5794-802, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17487995

RESUMO

The electronic structures of two series of end-capped thiophene oligomers, one set containing the electron-deficient dimesitylboryl end-cap and one containing the electron-rich triaryl amine end-cap, have been modeled using semiempirical quantum chemical calculations and the results used to assign features in the photoemission spectra of the materials in the condensed phase. For the thiophene oligomers end-capped with the electron-deficient dimesitylboryl moieties, the energy of the occupied frontier orbitals is largely governed by pi-type orbitals of the thiophene repeat units in the oligothiophene main chain. Conversely, in oligomers end-capped with electron-rich triarylamine moieties, the occupied frontier orbital energies are largely governed by orbital states of heavily mixed character associated with thiophene pi-type systems and the low-lying nitrogen lone pairs of end capping groups.


Assuntos
Simulação por Computador , Modelos Químicos , Teoria Quântica , Tiofenos/química , Sensibilidade e Especificidade , Espectrofotometria/métodos
6.
Rev Sci Instrum ; 78(5): 053707, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17552825

RESUMO

We report a compact light collection scheme suitable for retrofitting a scanning tunneling microscope (STM) for STM-induced light emission experiments. The approach uses a pair of optical fibers with large core diameters and high numerical apertures to maximize light collection efficiency and to moderate the mechanical precision required for alignment. Bench tests indicate that efficiency reduction is almost entirely due to reflective losses at the fiber ends, while losses due to fiber misalignment have virtually been eliminated. Photon-map imaging with nanometer features is demonstrated on a stepped Au(111) surface with signal rates exceeding 10(4) counts/s.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Microscopia de Tunelamento/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Luz , Microscopia de Tunelamento/métodos , Fibras Ópticas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
J Phys Chem B ; 109(12): 5790-5, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16851630

RESUMO

We have investigated the initial stages of vacuum-deposited sexithiophene (alpha-6T) adlayer formation on Au(111) vicinal surfaces at room temperature. The in situ scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) reveal a step edge-driven growth of alpha-6T on the Au(111) vicinal surfaces that first leads to the formation of an ordered monolayer, comprising two phases with the molecular major axes aligned along the step edges. The monolayer formation is then followed by the appearance of a single-phase 2D superstructure at a two-monolayer coverage. The results highlight the potential of using vicinal metal surfaces as templates for generating organized organic nanostructures over macroscopic areas for applications in organic electronics and moletronics.

8.
ACS Appl Mater Interfaces ; 6(20): 17837-47, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25215632

RESUMO

Platinum nanourchins supported on microfibrilated cellulose films (MFC) were fabricated and evaluated as hydrogen peroxide catalysts for small-scale, autonomous underwater vehicle (AUV) propulsion systems. The catalytic substrate was synthesized through the reduction of chloroplatinic acid to create a thick film of Pt coral-like microstructures coated with Pt urchin-like nanowires that are arrayed in three dimensions on a two-dimensional MFC film. This organic/inorganic nanohybrid displays high catalytic ability (reduced activation energy of 50-63% over conventional materials and 13-19% for similar Pt nanoparticle-based structures) during hydrogen peroxide (H2O2) decomposition as well as sufficient propulsive thrust (>0.5 N) from reagent grade H2O2 (30% w/w) fuel within a small underwater reaction vessel. The results demonstrate that these layered nanohybrid sheets are robust and catalytically effective for green, H2O2-based micro-AUV propulsion where the storage and handling of highly explosive, toxic fuels are prohibitive due to size-requirements, cost limitations, and close person-to-machine contact.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa