Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geobiology ; 20(2): 310-330, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34676677

RESUMO

Microbial mats floating within multiple hydrothermally sourced streams in El Tatio, Chile, frequently exhibit brittle siliceous crusts (~1 mm thick) above the air-water interface. The partially silicified mats contain a diverse assemblage of microbial clades and metabolisms, including cyanobacteria performing oxygenic photosynthesis. Surficial crusts are composed of several amorphous silica layers containing well-preserved filaments (most likely cyanobacteria) and other cellular textures overlying EPS-rich unsilicified mats. Environmental logs, silica crust distribution, and microbial preservation patterns provide evidence for crust formation via repeated cycles of evaporation and silica precipitation. Within the mats, in situ microelectrode profiling reveals that daytime oxygen concentrations and pH values are diminished beneath silica crusts compared with adjacent unencrusted communities, indicating localized inhibition of oxygenic photosynthesis due to light attenuation. As a result, aqueous conditions under encrusted mats have a higher saturation state with regard to amorphous silica compared with adjacent, more active mats where high pH increases silica solubility, likely forming a modest feedback loop between diminished photosynthesis and crust precipitation. However, no fully lithified sinters are associated with floating encrusted mats in El Tatio streams, as both subaqueous and subaerial silica precipitation are limited by undersaturated, low-SiO2 (<150 ppm) stream waters. By contrast, well-cemented sinters can form by evaporation in silica-undersaturated solutions above 200 ppm SiO2 . Floating mats in El Tatio therefore represent a specific sinter preservation window, where evaporation in silica-undersaturated microbial mats produces crusts, which preserve cells and affect mat chemistry, but low-silica concentrations prevent the formation of lasting sinter deposits. Patterns of silica precipitation in El Tatio microbial communities show that the preservation potential of silicifying mats in the rock record is strongly dependent on aqueous silica concentrations.


Assuntos
Cianobactérias , Dióxido de Silício , Chile , Oxigênio , Rios
2.
Nat Commun ; 12(1): 2944, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011941

RESUMO

The ~2.22-2.06 Ga Lomagundi Event was the longest positive carbon isotope excursion in Earth's history and is commonly interpreted to reflect perturbations in continental weathering and the phosphorous cycle. Previous models have focused on mechanisms of increasing phosphorous solubilization during weathering without focusing on transport to the oceans and its dispersion in seawater. Building from new experimental results, here we report kaolinite readily absorbs phosphorous under acidic freshwater conditions, but quantitatively releases phosphorous under seawater conditions where it becomes bioavailable to phytoplankton. The strong likelihood of high weathering intensities and associated high kaolinite content in post-Great-Oxidation-Event paleosols suggests there would have been enhanced phosphorus shuttling from the continents into marine environments. A kaolinite phosphorous shuttle introduces the potential for nonlinearity in the fluxes of phosphorous to the oceans with increases in chemical weathering intensity.

3.
Geobiology ; 16(6): 640-658, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30062734

RESUMO

Sedimentary phosphorites comprise a major phosphorus (P) ore, yet their formation remains poorly understood. Extant polyphosphate-metabolizing bacterial communities are known to act as bacterial phosphate-pumps, leading to episodically high dissolved phosphate concentrations in pore waters of organic-rich sediment. These conditions can promote the precipitation of amorphous precursor phases that are quickly converted to apatite-usually in carbonate fluorapatite form [Ca10 (PO4 ,CO3 )6 F2-3 ]. To assess the mechanisms underpinning the nucleation and growth of sedimentary apatite, we sampled P-rich sediments from the Namibian shelf, a modern environment where phosphogenesis presently occurs. The P-rich fraction of the topmost centimetres of sediment mainly consists of pellets about 50-400 µm in size, which in turn are comprised of micron-sized apatite particles that are often arranged into radial structures with diameters ranging from 2 to 4 µm, and morphologies that range from rod-shapes to dumbbells to spheres that resemble laboratory-grown fluorapatite-gelatin nanocomposites known from double-diffusion experiments in organic matrices. The nucleation and growth of authigenic apatite on the Namibian shelf is likely analogous to these laboratory-produced precipitates, where organic macromolecules play a central role in apatite nucleation and growth. The high density of apatite nucleation sites within the pellets (>109 particles per cm3 ) suggests precipitation at high pore water phosphate concentrations that have been reported from the Namibian shelf and may be attributed to microbial phosphate pumping. The intimate association of organic material with the apatite could suggest a possible role of biological substrata, such as exopolymeric substances (EPS), in the nucleation of apatite precursors. Importantly, we do not observe any evidence that the apatite particles are actual phosphatized microbes, contradicting some earlier studies. Nevertheless, these results further evidence the potential importance of microbially derived (extracellular) organic matter as a template for phosphatic mineral nucleation in both recent and ancient phosphorites.


Assuntos
Apatitas/análise , Sedimentos Geológicos/análise , Fósforo/análise , Gelatina/análise , Namíbia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa