RESUMO
BACKGROUND: Clinicians increasingly serve youths from societal/cultural backgrounds different from their own. This raises questions about how to interpret what such youths report. Rescorla et al. (2019, European Child & Adolescent Psychiatry, 28, 1107) found that much more variance in 72,493 parents' ratings of their offspring's mental health problems was accounted for by individual differences than by societal or cultural differences. Although parents' reports are essential for clinical assessment of their offspring, they reflect parents' perceptions of the offspring. Consequently, clinical assessment also requires self-reports from the offspring themselves. To test effects of individual differences, society, and culture on youths' self-ratings of their problems and strengths, we analyzed Youth Self-Report (YSR) scores for 39,849 11-17 year olds in 38 societies. METHODS: Indigenous researchers obtained YSR self-ratings from population samples of youths in 38 societies representing 10 culture cluster identified in the Global Leadership and Organizational Behavioral Effectiveness study. Hierarchical linear modeling of scores on 17 problem scales and one strengths scale estimated the percent of variance accounted for by individual differences (including measurement error), society, and culture cluster. ANOVAs tested age and gender effects. RESULTS: Averaged across the 17 problem scales, individual differences accounted for 92.5% of variance, societal differences 6.0%, and cultural differences 1.5%. For strengths, individual differences accounted for 83.4% of variance, societal differences 10.1%, and cultural differences 6.5%. Age and gender had very small effects. CONCLUSIONS: Like parents' ratings, youths' self-ratings of problems were affected much more by individual differences than societal/cultural differences. Most variance in self-rated strengths also reflected individual differences, but societal/cultural effects were larger than for problems, suggesting greater influence of social desirability. The clinical significance of individual differences in youths' self-reports should thus not be minimized by societal/cultural differences, which-while important-can be taken into account with appropriate norms, as can gender and age differences.
Assuntos
Individualidade , Pais , Criança , Adolescente , Humanos , Pais/psicologia , AutorrelatoRESUMO
The ion-induced fragmentation of CH4 2+ into H+ and CH3 + is studied using a cold target recoil ion momentum spectroscopy in coincidence with the charge state of the post-collision projectile. Using constant velocity Ar9+ and N3+, results from four different datasets are presented, with a selection on the final charge state of the projectile (Ar8+ or Ar7+ and N2+ or N+). Three distinct dissociation pathways (I, II, and III) are observed for each dataset, with the mean kinetic energy release values of around 4.7, 5.8, and 7.9 eV, respectively. The electronic states that are populated correspond to electronic configurations (1t2)-2 and (2a1)-1(1t2)-1 of the methane dication, CH4 2+. The relative branching ratios between the three pathways are discussed as a function of the charge state of the post-collision projectile, and a strong correlation with the specific nature of the ion-molecule interaction is found. The existing ab initio calculations have provided an explanation only for pathway II. In this article, we propose an explanation for pathway III, but pathway I still remains unexplained and requires further theoretical efforts. A discussion of the dependence of dissociation on the mode of excitation is presented.
RESUMO
Fragmentation of molecular nitrogen dimers (N_{2})_{2} induced by collision with low energy 90 keV Ar^{9+} ions is studied to evidence the influence of a molecular environment on the fragmentation dynamics of N_{2} cations. Following the capture of three or four electrons from the dimer, the three-body N_{2}^{+}+N^{m+}+N^{n+} [with (m,n)=(1,1) or (1, 2)] fragmentation channels provide clean experimental cases where molecular fragmentation may occur in the presence of a neighbor molecular cation. The effect of the environment on the fragmentation dynamics within the dimer is investigated through the comparison of the kinetic energy release (KER) spectra for these three-body channels and for isolated N_{2}^{(m+n)+} monomer cations. The corresponding KER spectra exhibit energy shifts of the order of 10 eV, attributed to the deformation of the N^{m+}+N^{n+} potential energy curves in the presence of the neighboring N_{2}^{+} cation. The KER structures remain unchanged, indicating that the primary collision process is not significantly affected by the presence of a neighbor molecule.
RESUMO
Biopharmaceuticals (BPs) represent a rapidly growing class of approved and investigational drug therapies that is contributing significantly to advancing treatment in multiple disease areas, including inflammatory and autoimmune diseases, genetic deficiencies and cancer. Unfortunately, unwanted immunogenic responses to BPs, in particular those affecting clinical safety or efficacy, remain among the most common negative effects associated with this important class of drugs. To manage and reduce risk of unwanted immunogenicity, diverse communities of clinicians, pharmaceutical industry and academic scientists are involved in: interpretation and management of clinical and biological outcomes of BP immunogenicity, improvement of methods for describing, predicting and mitigating immunogenicity risk and elucidation of underlying causes. Collaboration and alignment of efforts across these communities is made difficult due to lack of agreement on concepts, practices and standardized terms and definitions related to immunogenicity. The Innovative Medicines Initiative (IMI; www.imi-europe.org), ABIRISK consortium [Anti-Biopharmaceutical (BP) Immunization Prediction and Clinical Relevance to Reduce the Risk; www.abirisk.eu] was formed by leading clinicians, academic scientists and EFPIA (European Federation of Pharmaceutical Industries and Associations) members to elucidate underlying causes, improve methods for immunogenicity prediction and mitigation and establish common definitions around terms and concepts related to immunogenicity. These efforts are expected to facilitate broader collaborations and lead to new guidelines for managing immunogenicity. To support alignment, an overview of concepts behind the set of key terms and definitions adopted to date by ABIRISK is provided herein along with a link to access and download the ABIRISK terms and definitions and provide comments (http://www.abirisk.eu/index_t_and_d.asp).
Assuntos
Hipersensibilidade a Drogas/prevenção & controle , Drogas em Investigação/normas , Guias como Assunto/normas , Terminologia como Assunto , Alergia e Imunologia/normas , Hipersensibilidade a Drogas/imunologia , Indústria Farmacêutica/organização & administração , Indústria Farmacêutica/normas , Drogas em Investigação/efeitos adversos , Drogas em Investigação/uso terapêutico , Humanos , Inovação Organizacional , Política Organizacional , Padrões de ReferênciaRESUMO
We provide the experimental evidence that the single electron capture process in slow collisions between O^{3+} ions and neon dimer targets leads to an unexpected production of low-energy electrons. This production results from the interatomic Coulombic decay process, subsequent to inner-shell single electron capture from one site of the neon dimer. Although pure one-electron capture from the inner shell is expected to be negligible in the low collision energy regime investigated here, the electron production due to this process overtakes by 1 order of magnitude the emission of Auger electrons by the scattered projectiles after double-electron capture. This feature is specific to low charge states of the projectile: similar studies with Xe^{20+} and Ar^{9+} projectiles show no evidence of inner-shell single-electron capture. The dependence of the process on the projectile charge state is interpreted using simple calculations based on the classical over the barrier model.
RESUMO
Electron capture processes for low energy Ar(9+) ions colliding with Ar(2) dimer targets are investigated, focusing attention on charge sharing between the two Ar atoms as a function of the molecular orientation and the impact parameter. A preference for charge-asymmetric dissociation channels is observed, with a strong correlation between the projectile scattering angle and the molecular ion orientation. The measurements here provide clear evidence that projectiles distinguish each atom in the target and that electron capture from near-site atoms is favored. Monte Carlo calculations based on the classical over-the-barrier model, with dimer targets represented as two independent atoms, are compared to the data. They give new insight into the dynamics of the collision by providing, for the different electron capture channels, the two-dimensional probability maps p(b), where b is the impact parameter vector in the molecular frame.
RESUMO
We report highly selective covalent bond modifications in collisions between keV alpha particles and van der Waals clusters of C(60) fullerenes. Surprisingly, C(119)(+) and C(118)(+) are the dominant molecular fusion products. We use molecular dynamics simulations to show that C(59)(+) and C(58)(+) ions--effectively produced in prompt knockout processes with He(2+)--react rapidly with C(60) to form dumbbell C(119)(+) and C(118)(+). Ion impact on molecular clusters in general is expected to lead to efficient secondary reactions of interest for astrophysics. These reactions are different from those induced by photons.
Assuntos
Partículas alfa , Fulerenos/química , Cátions Bivalentes/química , Hélio/química , Modelos Moleculares , Peso Molecular , Método de Monte Carlo , TermodinâmicaRESUMO
AIM: Assess the pharmacodynamics of lixisenatide once daily (QD) versus liraglutide QD in type 2 diabetes insufficiently controlled on metformin. METHODS: In this 28-day, randomized, open-label, parallel-group, multicentre study (NCT01175473), patients (mean HbA1c 7.3%) received subcutaneous lixisenatide QD (10 µg weeks 1-2, then 20 µg; n = 77) or liraglutide QD (0.6 mg week 1, 1.2 mg week 2, then 1.8 mg; n = 71) 30 min before breakfast. Primary endpoint was change in postprandial plasma glucose (PPG) exposure from baseline to day 28 during a breakfast test meal. RESULTS: Lixisenatide reduced PPG significantly more than liraglutide [mean change in AUC(0:30-4:30h) : -12.6 vs. -4.0 h·mmol/L, respectively; p < 0.0001 (0:30 h = start of meal)]. Change in maximum PPG excursion was -3.9 mmol/l vs. -1.4 mmol/l, respectively (p < 0.0001). More lixisenatide-treated patients achieved 2-h PPG <7.8 mmol/l (69% vs. 29%). Changes in fasting plasma glucose were greater with liraglutide (-0.3 vs. -1.3 mmol/l, p < 0.0001). Lixisenatide provided greater decreases in postprandial glucagon (p < 0.05), insulin (p < 0.0001) and C-peptide (p < 0.0001). Mean HbA1c decreased in both treatment groups (from 7.2% to 6.9% with lixisenatide vs. 7.4% to 6.9% with liraglutide) as did body weight (-1.6 kg vs. -2.4 kg, respectively). Overall incidence of adverse events was lower with lixisenatide (55%) versus liraglutide (65%), with no serious events or hypoglycaemia reported. CONCLUSIONS: Once daily prebreakfast lixisenatide provided a significantly greater reduction in PPG (AUC) during a morning test meal versus prebreakfast liraglutide. Lixisenatide provided significant decreases in postprandial insulin, C-peptide (vs. an increase with liraglutide) and glucagon, and better gastrointestinal tolerability than liraglutide.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Hiperglicemia/prevenção & controle , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Peptídeos/uso terapêutico , Adulto , Idoso , Peptídeo C/sangue , Diabetes Mellitus Tipo 2/sangue , Esquema de Medicação , Resistência a Medicamentos , Feminino , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Hemoglobinas Glicadas/análise , Humanos , Hiperinsulinismo/prevenção & controle , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/efeitos adversos , Incretinas/administração & dosagem , Incretinas/efeitos adversos , Injeções Subcutâneas , Liraglutida , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Peptídeos/administração & dosagem , Peptídeos/efeitos adversosRESUMO
We report experimental results for the ionization and fragmentation of weakly bound van der Waals clusters of n C60 molecules following collisions with Ar(2+), He(2+), and Xe(20+) at laboratory kinetic energies of 13 keV, 22.5 keV, and 300 keV, respectively. Intact singly charged C60 monomers are the dominant reaction products in all three cases and this is accounted for by means of Monte Carlo calculations of energy transfer processes and a simple Arrhenius-type [C60]n(+) â C60(+)+(n-1)C60 evaporation model. Excitation energies in the range of only ~0.7 eV per C60 molecule in a [C60]13(+) cluster are sufficient for complete evaporation and such low energies correspond to ion trajectories far outside the clusters. Still we observe singly and even doubly charged intact cluster ions which stem from even more distant collisions. For penetrating collisions the clusters become multiply charged and some of the individual molecules may be promptly fragmented in direct knock-out processes leading to efficient formations of new covalent systems. For Ar(2+) and He(2+) collisions, we observe very efficient C119(+) and C118(+) formation and molecular dynamics simulations suggest that they are covalent dumb-bell systems due to bonding between C59(+) or C58(+) and C60 during cluster fragmentation. In the Ar(2+) case, it is possible to form even smaller C120-2m(+) molecules (m = 2-7), while no molecular fusion reactions are observed for the present Xe(20+) collisions.
RESUMO
The electron shakeoff probability of 6Li2+ ions resulting from the ß- decay of 6He+ ions has been measured with high precision using a specially designed recoil ion spectrometer. This is the first measurement of a pure electron shakeoff following nuclear ß decay, not affected by multielectron processes such as Auger cascades. In this ideal textbook case for the application of the sudden approximation, the experimental ionization probability was found to be P(so)(exp)=0.02339(36) in perfect agreement with simple quantum mechanical calculations.
RESUMO
In this paper, we present a newly developed crossed beam experimental setup that utilizes the velocity map imaging (VMI) technique to simultaneously measure both the kinetic energy and emission angle of electrons emitted from atoms or molecules upon ion collision. The projectile ion beam with keV to MeV kinetic energy orthogonally crosses the neutral target beam produced by an effusion cell. The emitted electrons are extracted and analyzed by a multi-electrode VMI spectrometer. By monitoring the target density, the projectile ion beam intensity, and the beams' overlap, we are able to measure absolute differential cross sections for collision-induced electron emission from molecules. The characterization of the setup and the methodology will be presented as well as first results for electron emission from uracil upon 0.98 MeV/u 12C4+ collision.
Assuntos
ElétronsRESUMO
We report on measurements of the ionization and fragmentation of polycyclic aromatic hydrocarbon (PAH) targets in Xe(20+) + C(16)H(10) and Xe(20+) + [C(16)H(10)](k) collisions and compare results for the two C(16)H(10) isomers: pyrene and fluoranthene. For both types of targets, i.e., for single PAH molecules isolated in vacuum or for isomerically pure clusters of one of the molecules, the resulting fragment spectra are surprisingly similar. However, we do observe weak but significant isomer effects. Although these are manifested in very different ways for the monomer and cluster targets, they both have at their roots small differences (<2.5 eV) between the total binding energies of neutral, and singly and multiply charged pyrene and fluoranthene monomers. The results will be discussed in view of the density functional theory calculations of ionization and dissociation energies for fluoranthene and pyrene. A simple classical over-the-barrier model is used to estimate cross sections for single- and multiple-electron transfer between PAHs and ions. Calculated single and multiple ionization energies, and the corresponding model PAH ionization cross sections, are given.
RESUMO
We measured kinetic energies of the fragment ions of argon dimers multiply ionized by low-energy Ar(9+) collisions. For (Ar2)(4+) dissociation, the asymmetric channel (Ar(3+) + Ar(+)) yield is found unexpectedly higher than the symmetric channel (Ar(2+) + Ar(2+)) yield in contrast with previous observation for covalent molecules or clusters. For the dissociation channel (Ar2)(2+)âAr(+) + Ar(+), two well-separated peaks were observed, clearly evidencing that the direct Coulombic dissociation and the radiative charge transfer followed by ionic dissociation alternatively occur for the dicationic dimers. The respective intensity of these two peaks provides a direct mean to unravel the respective proportion of one-site and two-site double-electron capture, which are found equal for this collision system.
RESUMO
We report the first experimental study of ions interacting with clusters of polycyclic aromatic hydrocarbon (PAH) molecules. Collisions between 11.25 keV 3He+ or 360 keV 129Xe20+ and weakly bound clusters of one of the smallest PAH molecules, anthracene, show that C14H10 clusters have much higher tendencies to fragment in ion collisions than other weakly bound clusters. The ionization is dominated by peripheral collisions in which the clusters, very surprisingly, are more strongly heated by Xe20+ collisions than by He+ collisions. The appearance size is k=15 for [C 14H10](k)2+.
RESUMO
An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10-10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams. Preliminary results using the different on-line characterization techniques to study the formation of nano-hillocks on silicon and mica substrates are presented to illustrate the performances of the setup.
RESUMO
The diagnosis of systemic Candida infections is a recognized challenge. We developed a mass spectrometry strategy to detect signals from Candida molecules in patients' sera. Pre-analytical procedures were designed to extract oligosaccharides from serum. A peak m/z of at 365 was specifically revealed in sera from patients with candidaemia with regard to healthy controls. This biomarker was identified as a disaccharide, its presence did not correlate with mannanaemia or glucanaemia. Mouse models of Candida albicans colonization and infection showed that the signal was specifically associated with tissue invasion, suggesting that clinical evaluation of its usefulness in discriminating colonized and infected patients would be worthwhile.
Assuntos
Biomarcadores/sangue , Candidíase Invasiva/sangue , Candidíase Invasiva/diagnóstico , Dissacarídeos/sangue , Micologia/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto , Idoso , Animais , Candida albicans , Candidíase Invasiva/epidemiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-IdadeRESUMO
Between January 1, 1985, and December 15, 1987, 60 patients underwent surgery for carotid lesions under local cervical block anesthesia. Sixty-seven reconstruction procedures were performed including 64 endarterectomies and 3 vein bypasses. During the same 3 year period, 938 other reconstruction procedures were carried out under general anesthesia for a total of 1005 procedures. These 60 patients, who accounted for 6.7% of our indications, were selected for surgery under local anesthesia because they were at high risk for cardiac and neurologic complications. As far as staging is concerned, this subgroup of patients included: 14 asymptomatic cases (stage 0), i.e., 21%; 44 transient ischemic attacks (stage I), i.e., 66%; 2 progressive stroke (stage II), i.e., 3%; 7 patients with neurologic sequels (stage III), i.e., 10%. In all 79% of the patients were symptomatic. The asymptomatic patients all presented bilateral tight stenosis sometimes with thrombosis of the contralateral carotid. The technique of local anesthesia and endarterectomy were classic: closing with a bougie to calibrate the lumen, systematic intraoperative arteriography and immediate correction of technical failures (2 times); no death occurred among the patients in stages 0, 1 and II; 1 early asymptomatic occlusion that was not corrected was noted; in one case, a ligation of the carotid was necessary after technical failure, without consequences; one death occurred in stage III after intracerebral hemorrhage. On the basis of our experience local cervical block anesthesia appears to be a simple and reliable method of ensuring intraoperative diagnosis of cerebral ischemia. It eliminates all intraoperative cerebral complications secondary to ischemia and allows a better understanding of the physiopathologic mechanisms underlying perioperative neurologic complications. The absence of neurologic and cardiac complications in this series of very high risk patients enables us to extend eligibility for surgery to include patients with unstable cardiac and cerebral disease.
Assuntos
Encefalopatias/prevenção & controle , Doenças das Artérias Carótidas/cirurgia , Transtornos Cerebrovasculares/cirurgia , Endarterectomia , Cardiopatias/prevenção & controle , Ataque Isquêmico Transitório/cirurgia , Bloqueio Nervoso , Complicações Pós-Operatórias/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
The production of radioactive ions using the Isotope Separation On-Line method gives rise, in most cases, to singly charged ions. In order to perform experiments with postaccelerated radioactive ion beams, these ions have to be multicharged. We describe here a new compact design for a charge breeder that will be coupled to the production target of SPIRAL1 at GANIL. We present recent results obtained offline with stable alkali ions (Na, K, Rb, and Cs) on the SIRa test bench. Particularly, 1(+) to N(+) conversion efficiencies and conversion times are presented. Several points have been identified for the improvements of the present performances.
RESUMO
Development of new radioactive beams, and thus of new target ion sources (TISs) for isotope-separator-on-line production systems are in progress at GANIL for the SPIRAL 2 project. The efficiency and time response measurements of each step in the production process are crucial to predict and maximize the available yields, in particular, for short lived isotopes. This paper presents a method for measuring these quantities that makes use of a stable alkali chopped beam of controlled intensity. This method was applied to surface ionization source test for high efficiency. Results of recent experiments are presented that include ionization efficiency measurements for Cs, Rb, K, Na, and Li with a graphite and rhenium ionizer and dwell time of these alkalis on graphite. The results enabled to design a first surface ionization source prototype which will be installed in the SPIRAL 2 TIS.
RESUMO
In the frame of the SPIRAL II (Système de Production d'Ions Radioactifs Accélérés en Ligne Partie II) project, several developments of stable and radioactive ion production systems have been started up. In parallel, GANIL has the ambition to preserve the existing stable and radioactive beams and also to increase its range by offering new ones. In order to identify the best directions for this development, a new group called GANISOL has been formed. Its preliminary conclusions and the latest developments at GANIL are presented.