Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998064

RESUMO

Intestinal infections caused by Escherichia coli and Salmonella enterica pose a huge economic burden on the swine industry that is exacerbated by the development of antimicrobial resistance in these pathogens, thus raising the need for alternative prevention and treatment methods. Our aim was to test the beneficial effects of the flavonoid luteolin in an in vitro model of porcine intestinal infections. We infected the porcine intestinal epithelial cell line IPEC-J2 with E. coli and S. enterica subsp. enterica serovar Typhimurium (106 CFU/mL) with or without previous, concurrent, or subsequent treatment with luteolin (25 or 50 µg/mL), and measured the changes in the reactive oxygen species and interleukin-6 and -8 levels of cells. We also tested the ability of luteolin to inhibit the adhesion of bacteria to the cell layer, and to counteract the barrier integrity damage caused by the pathogens. Luteolin was able to alleviate oxidative stress, inflammation, and barrier integrity damage, but it could not inhibit the adhesion of bacteria to IPEC-J2 cells. Luteolin is a promising candidate to be used in intestinal infections of pigs, however, further studies are needed to confirm its efficacy. The use of luteolin in the future could ultimately lead to a reduced need for antibiotics in pig production.

2.
Animals (Basel) ; 13(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37835613

RESUMO

Antimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species. We established a co-culture model, in which gastrointestinal infection was modeled using Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium). Using intestinal porcine epithelial cells (IPEC-J2), the effects of pre-, co-, and post-treatment with Lactobacillus (L.) rhamnosus on the barrier function, intracellular (IC) reactive oxygen species (ROS) production, proinflammatory cytokine (IL-6 and IL-8) response, and adhesion inhibition were tested. E. coli- and S. Typhimurium-induced barrier impairment and increased ROS production could be counteracted using L. rhamnosus (p < 0.01). S. Typhimurium-induced IL-6 production was reduced via pre-treatment (p < 0.05) and post-treatment (p < 0.01); increased IL-8 secretion was decreased via pre-, co-, and post-treatment (p < 0.01) with L. rhamnosus. L. rhamnosus demonstrated significant inhibition of adhesion for both S. Typhimurium (p < 0.001) and E. coli (p < 0.001 in both pre-treatment and post-treatment; p < 0.05 in co-treatment). This study makes a substantial contribution to the understanding of the specific benefits of L. rhamnosus. Our findings can serve as a basis for further in vivo studies carried out in pigs and humans.

3.
Animals (Basel) ; 12(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36290134

RESUMO

Ochratoxin A (OTA) and lipopolysaccharide (LPS) intake can cause gastrointestinal disorders. Polyphenolic chrysin (CHR) and luteolin (LUT) display anti-inflammatory and antioxidant properties. Porcine intestinal epithelial (jejunal) IPEC-J2 cells were treated with OTA (1 µM, 5 µM and 20 µM), E. coli LPS (10 µg/mL), CHR (1 µM) and LUT (8.7 µM) alone and in their combinations. Cell viabilities (MTS assay) and extracellular (EC) hydrogen-peroxide (H2O2) production (Amplex red method) were evaluated. Intracellular (IC) reactive oxygen species (ROS) were assessed using a 2'-7'dichlorodihydrofluorescein diacetate (DCFH-DA) procedure. ELISA assay was used to evaluate IL-6 and IL-8 secretion. OTA decreased cell viabilities (p < 0.001) which could not be alleviated by LUT or CHR (p > 0.05); however, EC H2O2 production was successfully suppressed by LUT in IPEC-J2 cells (p < 0.001). OTA with LPS elevated the IC ROS which was counteracted by CHR and LUT (p < 0.001). IL-6 and IL-8 secretion was elevated by LPS + OTA (p < 0.001) which could be inhibited by LUT (p < 0.01 for IL-6; p < 0.001 for IL-8). Based on our results, CHR and LUT exerted beneficial effects on IC ROS levels and on cytokine secretion (LUT) in vitro; thus, they might be used as dietary and feed supplements to avoid OTA- and LPS-related health risks.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa