Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 128(15): 2938-50, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092939

RESUMO

The v-ATPase is a fundamental eukaryotic enzyme that is central to cellular homeostasis. Although its impact on key metabolic regulators such as TORC1 is well documented, our knowledge of mechanisms that regulate v-ATPase activity is limited. Here, we report that the Drosophila transcription factor Mitf is a master regulator of this holoenzyme. Mitf directly controls transcription of all 15 v-ATPase components through M-box cis-sites and this coordinated regulation affects holoenzyme activity in vivo. In addition, through the v-ATPase, Mitf promotes the activity of TORC1, which in turn negatively regulates Mitf. We provide evidence that Mitf, v-ATPase and TORC1 form a negative regulatory loop that maintains each of these important metabolic regulators in relative balance. Interestingly, direct regulation of v-ATPase genes by human MITF also occurs in cells of the melanocytic lineage, showing mechanistic conservation in the regulation of the v-ATPase by MITF family proteins in fly and mammals. Collectively, this evidence points to an ancient module comprising Mitf, v-ATPase and TORC1 that serves as a dynamic modulator of metabolism for cellular homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Fatores de Transcrição/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Drosophila , Ativação Enzimática , Homeostase/fisiologia , Humanos , Melanócitos/metabolismo , Melanoma/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno , Transcrição Gênica/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Cell Rep ; 43(8): 114554, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39083378

RESUMO

The mild hypothermia response (MHR) maintains organismal homeostasis during cold exposure and is thought to be critical for the neuroprotection documented with therapeutic hypothermia. To date, little is known about the transcriptional regulation of the MHR. We utilize a forward CRISPR-Cas9 mutagenesis screen to identify the histone lysine methyltransferase SMYD5 as a regulator of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia. This repression correlates with temperature-dependent levels of histone H3 lysine 26 trimethylation (H3K36me3) at the SP1 locus and globally, indicating that the mammalian MHR is regulated at the level of histone modifications. We have identified 37 additional SMYD5-regulated temperature-dependent genes, suggesting a broader MHR-related role for SMYD5. Our study provides an example of how histone modifications integrate environmental cues into the genetic circuitry of mammalian cells and provides insights that may yield therapeutic avenues for neuroprotection after catastrophic events.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Camundongos , Hipotermia/metabolismo , Hipotermia/genética , Metilação , Sistemas CRISPR-Cas/genética , Regulação da Expressão Gênica , Células HEK293
3.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333301

RESUMO

Organisms have homeostatic mechanisms to respond to cold temperature to ensure survival including the activation of the mammalian neuroprotective mild hypothermia response (MHR) at 32°C. We show activation of the MHR at euthermia by an FDA-approved medication Entacapone, proof-of-principle that the MHR can be medically manipulated. Utilizing a forward CRISPR-Cas9 mutagenesis screen, we identify the histone lysine methyltransferase SMYD5 as an epigenetic gatekeeper of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia but not at 32°C. This repression is mirrored by temperature-dependent levels of H3K36me3 at the SP1-locus and globally indicating that the mammalian MHR is regulated at the level of histone modifications. We identified 45 additional SMYD5-temperature dependent genes suggesting a broader MHR-related role for SMYD5. Our study provides an example of how the epigenetic machinery integrates environmental cues into the genetic circuitry of mammalian cells and suggests novel therapeutic avenues for neuroprotection after catastrophic events.

4.
Elife ; 112022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36398880

RESUMO

During brain development, many newborn neurons undergo apoptosis and are engulfed by microglia, the tissue-resident phagocytes of the brain, in a process known as efferocytosis. A hallmark of microglia is their highly branched morphology characterized by the presence of numerous dynamic extensions that these cells use for scanning the brain parenchyma and engulfing unwanted material. The mechanisms driving branch formation and apoptotic cell engulfment in microglia are unclear. By taking a live-imaging approach in zebrafish, we show that while microglia generate multiple microtubule-based branches, they only successfully engulf one apoptotic neuron at a time. Further investigation into the mechanism underlying this sequential engulfment revealed that targeted migration of the centrosome into one branch is predictive of phagosome formation and polarized vesicular trafficking. Moreover, experimentally doubling centrosomal numbers in microglia increases the rate of engulfment and even allows microglia to remove two neurons simultaneously, providing direct supporting evidence for a model where centrosomal migration is a rate-limiting step in branch-mediated efferocytosis. Conversely, light-mediated depolymerization of microtubules causes microglia to lose their typical branched morphology and switch to an alternative mode of engulfment, characterized by directed migration towards target neurons, revealing unexpected plasticity in their phagocytic ability. Finally, building on work focusing on the establishment of the immunological synapse, we identified a conserved signalling pathway underlying centrosomal movement in engulfing microglia.


Assuntos
Microglia , Peixe-Zebra , Animais , Microglia/metabolismo , Fagocitose/fisiologia , Neurônios/metabolismo , Centrossomo
5.
Cells ; 11(20)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291142

RESUMO

Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation.


Assuntos
Neoplasias Encefálicas , Ácido Hialurônico , Hialuronoglucosaminidase , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Linhagem Celular Tumoral , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Qualidade de Vida , RNA Interferente Pequeno , Neoplasias de Mama Triplo Negativas/patologia
6.
Elife ; 102021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33438577

RESUMO

The microphthalmia-associated transcription factor (MITF) is a critical regulator of melanocyte development and differentiation. It also plays an important role in melanoma where it has been described as a molecular rheostat that, depending on activity levels, allows reversible switching between different cellular states. Here, we show that MITF directly represses the expression of genes associated with the extracellular matrix (ECM) and focal adhesion pathways in human melanoma cells as well as of regulators of epithelial-to-mesenchymal transition (EMT) such as CDH2, thus affecting cell morphology and cell-matrix interactions. Importantly, we show that these effects of MITF are reversible, as expected from the rheostat model. The number of focal adhesion points increased upon MITF knockdown, a feature observed in drug-resistant melanomas. Cells lacking MITF are similar to the cells of minimal residual disease observed in both human and zebrafish melanomas. Our results suggest that MITF plays a critical role as a repressor of gene expression and is actively involved in shaping the microenvironment of melanoma cells in a cell-autonomous manner.


Assuntos
Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Linhagem Celular Tumoral , Humanos , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo
7.
PLoS One ; 15(9): e0238546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881934

RESUMO

The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other's mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia
8.
Sci Rep ; 9(1): 1055, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705290

RESUMO

The MITF transcription factor is a master regulator of melanocyte development and a critical factor in melanomagenesis. The related transcription factors TFEB and TFE3 regulate lysosomal activity and autophagy processes known to be important in melanoma. Here we show that MITF binds the CLEAR-box element in the promoters of lysosomal and autophagosomal genes in melanocytes and melanoma cells. The crystal structure of MITF bound to the CLEAR-box reveals how the palindromic nature of this motif induces symmetric MITF homodimer binding. In metastatic melanoma tumors and cell lines, MITF positively correlates with the expression of lysosomal and autophagosomal genes, which, interestingly, are different from the lysosomal and autophagosomal genes correlated with TFEB and TFE3. Depletion of MITF in melanoma cells and melanocytes attenuates the response to starvation-induced autophagy, whereas the overexpression of MITF in melanoma cells increases the number of autophagosomes but is not sufficient to induce autophagic flux. Our results suggest that MITF and the related factors TFEB and TFE3 have separate roles in regulating a starvation-induced autophagy response in melanoma. Understanding the normal and pathophysiological roles of MITF and related transcription factors may provide important clinical insights into melanoma therapy.


Assuntos
Melanoma/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Autofagia/genética , Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Immunoblotting , Lisossomos/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Fator de Transcrição Associado à Microftalmia/genética , Reação em Cadeia da Polimerase em Tempo Real
9.
Front Plant Sci ; 9: 1667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483301

RESUMO

Climate change challenges forest vitality both directly by increasing drought and heat periods and indirectly, e.g., by creating favorable conditions for mass outbreaks of phyllophagous insects. The large forests dominated by Scots pine (Pinus sylvestris L.) that cover the lowland regions in northeast Germany have already been affected regularly by cyclic mass propagations of defoliating insect species in the past with climate projections implying an even more advantageous environment for devastating outbreaks in the future. To improve predictive and responsive capacities we have investigated a wide range of ecological parameters to identify those most strongly related to past outbreak waves of three central species. In total, we analyzed 3,748 variables covering stand and neighborhood properties, site quality, and climatic conditions for an area of roughly 750,000 ha of pine forests in the period 2002-2016. To reflect sensitivity against varying climate, we computed "floating windows" in relation to critical phenological phases of the respective insects. The parameters with the highest explanatory power resulted from the variable importance measures of the Random Forest (RF) methodology and have been evaluated by a 10-fold cross-validation process. Our findings closely reflect the known specific gradation patterns and show that relative variable importance varies with species. While Lymantria monacha L. feeding was mainly dependent on the surroundings of the respective stand, Diprion pini L. proved to be almost exclusively susceptible to climatic effects in its population dynamics. Dendrolimus pini L. exhibited a mixed pattern of variable importance involving both climatic and forest structure parameters. In many cases the obtained statistical results support well-known ecological cause-effect relations and long-term population change dynamics. The RF delivered very high levels of sensitivity and specificity in the developed classifications and proved to be an excellent tool to handle the large amounts of data utilized for this study. While the presented classification approach may already support a better prognosis of the amplitude during the outbreak culmination, the obtained (most important) variables are proposed as preferable covariates for modeling population dynamics of the investigated insect species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa