Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 41(1): 185-193, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520516

RESUMO

The existence of a human primary vestibular cortex is still debated. Current knowledge mainly derives from functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) acquisitions during artificial vestibular stimulation. This may be problematic as artificial vestibular stimulation entails coactivation of other sensory receptors. The use of fMRI is challenging as the strong magnetic field and loud noise during MRI may both stimulate the vestibular organ. This study aimed to characterize the cortical activity during natural stimulation of the human vestibular organ. Two fluorodeoxyglucose (FDG)-PET scans were obtained after natural vestibular stimulation in a self-propelled chair. Two types of stimuli were applied: (a) rotation (horizontal semicircular canal) and (b) linear sideways movement (utriculus). A comparable baseline FDG-PET scan was obtained after sitting motion-less in the chair. In both stimulation paradigms, significantly increased FDG uptake was measured bilaterally in the medial part of Heschl's gyrus, with some overlap into the posterior insula. This is the first neuroimaging study to visualize cortical processing of natural vestibular stimuli. FDG uptake was demonstrated in the medial-most part of Heschl's gyrus, normally associated with the primary auditory cortex. This anatomical localization seems plausible, considering that the labyrinth contains both the vestibular organ and the cochlea.


Assuntos
Mapeamento Encefálico , Tomografia por Emissão de Pósitrons , Propriocepção/fisiologia , Lobo Temporal/fisiologia , Vestíbulo do Labirinto/fisiologia , Idoso , Córtex Auditivo/diagnóstico por imagem , Córtex Auditivo/fisiologia , Feminino , Fluordesoxiglucose F18 , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Física , Compostos Radiofarmacêuticos , Lobo Temporal/diagnóstico por imagem , Vestíbulo do Labirinto/diagnóstico por imagem
2.
Front Neurol ; 12: 669390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367048

RESUMO

Background: Ménière's disease (MD) is a chronic peripheral vestibular disorder with recurrent episodes of vertigo accompanied by fluctuating hearing loss, tinnitus and aural fullness in the affected ear. There are several unanswered fundamental questions regarding MD, one of these being cortical activity during a MD attack. However, it is not possible to plan an investigation in an episodic disease as MD. Objective: To visualize cortical activity during an attack of MD. Method: 18F-FDG PET scans were used to visualize cortical activity in a 62 years old male suffering from definite MD. Two 18F-FDG PET scans were performed. One to show activity during the attack and one to show normal baseline brain activity 7 days after the attack. Results: A number of low-magnitude fluctuations in the 18F-FDG FDG uptake were found in 18F-FDG PET examination following the MD attack compared to the patient's own baseline 18F-FDG FDG scan. Across both hemispheres no significant changes were seen. However, reduced activity was observed in most of the orbitofrontal, frontal cortices as well as Heschl's gyrus and insula. Conclusion: This is the first neuroimaging showing alteration of brain activity during an attack in a patient with MD. No strong focal alterations was seen. It is noteworthy that the decreased activity observed was in the insula and Heschl's gyrus that seems to be core areas for processing information from the labyrinth. It is also of interest that decreased activity rather than hyperactivity was observed.

3.
Front Neurol ; 11: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047473

RESUMO

Introduction: The cortical metabolic activity in patients with Menière's disease has not been investigated. The aim of this study was to investigate the 18F-FDG cerebral uptake in Menière's patients compared to healthy controls. Method: Eight patients with right-sided Menière's disease and fourteen healthy controls underwent a video head impulse test (vHIT), test of utricular function with ocular vestibular evoked myogenic potentials (oVEMP) and three 18F-FDG-based PET examinations of the brain. Participants were seated in a self-propelled chair, injected with 18F-FDG and then exposed to 35 min of chair motion stimulation, followed by a PET scan. Two types of natural vestibular stimuli were applied, predominantly toward the right horizontal semicircular canal (angular acceleration) and right utriculus (linear acceleration). For baseline scans, participants were injected with 18F-FDG while seated without movement. Results: Analyses of baseline scans revealed decreased 18F-FDG-uptake in the medial part of Heschl's gyrus in the left hemisphere in patients with Menière's disease compared to healthy controls. During angular vestibular stimulation there was also a significantly decreased 18F-FDG uptake in the intersection between the medial part of Heschl's gyrus and the parietal operculum in the left hemisphere and bilaterally in the posterior part of insula. During linear stimulation, Menière's patients showed decreased 18F-FDG uptake in the medial part of Heschl's gyrus in the right hemisphere and also bilaterally in the posterior insula. In addition, decreased 18F-FDG uptake was seen in the thalamus during vestibular stimulation. Conclusion: Heschl's gyrus, the posterior part of insula, and thalamus have previously been shown to be core areas for processing vestibular inputs. Patients with Menière's disease solely differed from the healthy controls with lower cortical activity in these areas at baseline and during natural vestibular stimulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa