Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 53(2): 268-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22634137

RESUMO

The exact mechanism of estrogen in cardiovascular disease is not fully understood. As estrogen receptors (ERs), the peroxisome-proliferator-activated-receptor-γ (PPARγ) belongs to the family of ligand activated nuclear receptors regulating atheroprotective genes. The aim of this project was to investigate whether vascular effects of estrogen are mediated via PPARγ-regulation in the vascular compartment. Estrogen deficient ovariectomized wildtype-mice (OVX) displayed significant reduction of PPARγ-expression in aortic tissue compared to wildtype-mice with intact ovarian function (Sham). Hormone replacement with subdermal 17ß-estradiol pellets significantly increased vascular PPARγ-expression in ovariectomized female wildtype-mice (OVX/E2). Analogous to wildtype-mice, estrogen-deficient OVX ApoE(-/-)-mice had low vascular PPARγ-expression associated with ROS generation, endothelial dysfunction and atherogenesis. Estrogen replacement (OVX/E2) rescued vascular PPARγ-expression, reduced ROS generation, monocyte recruitment, atherosclerotic lesion formation and improved endothelial function. Inhibition of PPARγ by GW9662, a specific PPARγ-antagonist reduced 17ß-estradiol mediated vascular effects (OVX/E2+GW9662). Finally, despite estrogen deficiency treatment with pioglitazone (OVX+pioglitazone), a selective PPARγ-agonist, compensates deterioration of vascular morphology and function. 17ß-estradiol regulates vascular PPARγ-expression in wildtype- and ApoE(-/-)-mice. The presented data demonstrate the fundamental relevance of PPARγ as downstream target of 17ß-estradiol-related anti-inflammatory and atheroprotective effects within the vascular wall independent of its cardiovascular risk factor modifications.


Assuntos
PPAR gama/metabolismo , Anilidas/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Western Blotting , Peso Corporal/efeitos dos fármacos , Estradiol/farmacologia , Estrogênios , Feminino , Frequência Cardíaca/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Pioglitazona , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Superóxidos/metabolismo , Tiazolidinedionas/farmacologia
2.
Arch Med Sci ; 13(4): 930-936, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28721160

RESUMO

INTRODUCTION: Multidrug resistance-associated protein 1 (MRP1) is an anion transporter which is implicated in the efflux of the intracellular antioxidant anion glutathione as well as leukotrienes. Pharmacological inhibition of MRP1 exhibits antioxidative and anti-atherosclerotic effects both in vitro and in vivo. However, pharmacological inhibitors of MRP1 lack selectivity, which prompted us to study the in vivo impact of a genetic disruption of MRP1 on endothelial dysfunction, reactive oxygen species formation and atherogenesis in an atherosclerotic mouse model. MATERIAL AND METHODS: MRP1-/- LDLr-/- double knockout mice. were fed a high-fat and cholesterol-rich diet for 7 weeks. Thereafter, endothelial function was assessed in isolated aortic rings. Reactive oxygen species were quantified by L-012 chemiluminescence, and the atherosclerotic plaque burden was measured following oil red O staining. RESULTS: Endothelium-dependent vasodilation of MRP1-/- LDLr-/- double knockout mice was significantly improved compared to MRP1-competent LDLr-/- single knockout mice (0.56 ±0.06 vs. 0.78 ±0.08; n = 10; p = 0.048). This improvement was accompanied by a significant reduction in reactive oxygen species formation within the aortic tissue (102 ±27 RLU/s/mg vs. 315 ±78 RLU/s/mg, n = 9-11, p = 0.03). Moreover, the atherosclerotic plaque burden of MRP1-/- LDLr-/- double knockout mice was significantly reduced (0.06 ±0.01 vs. 0.12 ±0.02; n = 6; p = 0.047). Finally, arterial blood pressure was significantly reduced in MRP1-/- LDLr-/- double knockout mice (93 ±5 mm Hg vs. 128 ±4 mm Hg; n = 8-12; p < 0.001). CONCLUSIONS: Genetic disruption of MRP1 appears to reduce blood pressure and vascular oxidative stress in vivo, which leads to improved endothelial function and a reduced plaque burden in atherosclerotic mice. Therefore, MRP1 might represent a promising therapeutic target to improve endothelial function in patients suffering from atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa