Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
BMC Biol ; 12: 30, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24779377

RESUMO

BACKGROUND: Epimorphic regeneration of a missing appendage in fish and urodele amphibians involves the creation of a blastema, a heterogeneous pool of progenitor cells underneath the wound epidermis. Current evidence indicates that the blastema arises by dedifferentiation of stump tissues in the vicinity of the amputation. In response to tissue loss, silenced developmental programs are reactivated to form a near-perfect copy of the missing body part. However, the importance of chromatin regulation during epimorphic regeneration remains poorly understood. RESULTS: We found that specific components of the Nucleosome Remodeling and Deacetylase complex (NuRD) are required for fin regeneration in zebrafish. Transcripts of the chromatin remodeler chd4a/Mi-2, the histone deacetylase hdac1/HDAC1/2, the retinoblastoma-binding protein rbb4/RBBP4/7, and the metastasis-associated antigen mta2/MTA were specifically co-induced in the blastema during adult and embryonic fin regeneration, and these transcripts displayed a similar spatial and temporal expression patterns. In addition, chemical inhibition of Hdac1 and morpholino-mediated knockdown of chd4a, mta2, and rbb4 impaired regenerative outgrowth, resulting in reduction in blastema cell proliferation and in differentiation defects. CONCLUSION: Altogether, our data suggest that specialized NuRD components are induced in the blastema during fin regeneration and are involved in blastema cell proliferation and redifferentiation of osteoblast precursor cells. These results provide in vivo evidence for the involvement of key epigenetic factors in the cellular reprogramming processes occurring during epimorphic regeneration in zebrafish.


Assuntos
Nadadeiras de Animais/fisiologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Regeneração/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Nadadeiras de Animais/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Biomarcadores/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genoma/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Morfolinos/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Pirimidinas/farmacologia , Regeneração/efeitos dos fármacos , Regeneração/genética , Homologia de Sequência de Aminoácidos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
Development ; 138(21): 4649-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21989912

RESUMO

Morphogenesis represents a phase of development during which cell fates are executed. The conserved hox genes are key cell fate determinants during metazoan development, but their role in controlling organ morphogenesis is less understood. Here, we show that the C. elegans hox gene lin-39 regulates epidermal morphogenesis via its novel target, the essential zinc finger protein VAB-23. During the development of the vulva, the egg-laying organ of the hermaphrodite, the EGFR/RAS/MAPK signaling pathway activates, together with LIN-39 HOX, the expression of VAB-23 in the primary cell lineage to control the formation of the seven vulval toroids. VAB-23 regulates the formation of homotypic contacts between contralateral pairs of cells with the same sub-fates at the vulval midline by inducing smp-1 (semaphorin) transcription. In addition, VAB-23 prevents ectopic vulval cell fusions by negatively regulating expression of the fusogen eff-1. Thus, LIN-39 and the EGFR/RAS/MAPK signaling pathway, which specify cell fates earlier during vulval induction, continue to act during the subsequent phase of cell fate execution by regulating various aspects of epidermal morphogenesis. Vulval cell fate specification and execution are, therefore, tightly coupled processes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Proteínas de Transporte/metabolismo , Receptores ErbB/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Fusão Celular , Linhagem da Célula , Receptores ErbB/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por Mitógeno/genética , Dados de Sequência Molecular , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
3.
Nature ; 442(7105): 882, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16929289

RESUMO

Small RNA molecules participate in a variety of activities in the cell: in a process known as RNA interference (RNAi), double-stranded RNA triggers the degradation of messenger RNA that has a matching sequence; the small RNA intermediates of this process can also modify gene expression in the nucleus. Here we show that a single episode of RNAi in the nematode Caenorhabditis elegans can induce transcriptional silencing effects that are inherited indefinitely in the absence of the original trigger. Our findings may prove useful in the ongoing development of RNAi to treat disease.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos/genética , Hereditariedade/genética , Interferência de RNA , Animais , Proteínas de Caenorhabditis elegans/genética , Genes Dominantes/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/genética , Masculino , Fenótipo , Transcrição Gênica/genética , Transgenes/genética
4.
Dev Biol ; 344(2): 593-602, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20478293

RESUMO

In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch. Furthermore, we found that MOG-3 binds both to the nuclear proteins MEP-1 and CIR-1. MEP-1 is necessary for oocyte production and somatic differentiation, while the mammalian CIR-1 homolog counters Notch signaling. We propose that MOG-3, MEP-1 and CIR-1 associate in a nuclear complex which regulates different aspects of germ cell development. While FBF triggers the sperm/oocyte switch by directly repressing the fem-3 mRNA in the cytoplasm, the MOG proteins play a more indirect role in the nucleus, perhaps by acting as epigenetic regulators or by controlling precise splicing events.


Assuntos
Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas Correpressoras , Células Germinativas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Masculino , Meiose , Oócitos/metabolismo , Oócitos/fisiologia , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatozoides/metabolismo
5.
BMC Dev Biol ; 10: 78, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20667114

RESUMO

BACKGROUND: Hox genes play a central role in axial patterning during animal development. They are clustered in the genome and specify cell fate in sequential domains along the anteroposterior (A-P) body axis in a conserved order that is co-linear with their relative genomic position. In the soil worm Caenorhabditis elegans, this striking rule of co-linearity is broken by the anterior Hox gene ceh-13, which is located between the two middle Hox paralogs, lin-39 and mab-5, within the loosely organized nematode Hox cluster. Despite its evolutionary and developmental significance, the functional consequence of this unusual genomic organization remains unresolved. RESULTS: In this study we have investigated the role of ceh-13 in different developmental processes, and found that its expression and function are not restricted to the anterior body part. We show that ceh-13 affects cell migration and fusion as well as tissue patterning in the middle and posterior body regions too. These data reveal novel roles for ceh-13 in developmental processes known to be under the control of middle Hox paralogs. Consistently, enhanced activity of lin-39 and mab-5 can suppress developmental arrest and morphologic malformation in ceh-13 deficient animals. CONCLUSION: Our findings presented here show that, unlike other Hox genes in C. elegans which display region-specific accumulation and function along the A-P axis, the expression and functional domain of the anterior Hox paralog ceh-13 extends beyond the anterior region of the worm. Furthermore, ceh-13 and the middle Hox paralogs share several developmental functions. Together, these results suggest the emergence of the middle-group Hox genes from a ceh-13-like primordial Hox ancestor.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Movimento Celular , Evolução Molecular , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Animais , Caenorhabditis elegans/citologia , Embrião não Mamífero/metabolismo
6.
Curr Biol ; 15(16): 1513-7, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16111945

RESUMO

Programmed cell death (PCD) is an essential and highly orchestrated process that plays a major role in morphogenesis and tissue homeostasis during development. In humans, defects in regulation or execution of cell death lead to diabetes, neurodegenerative disorders, and cancer. Two major types of PCD have been distinguished: the caspase-mediated process of apoptosis and the caspase-independent process involving autophagy. Although apoptosis and autophagy are often activated together in response to stress, the molecular mechanisms underlying their interplay remain unclear. Here we show that BEC-1, the C. elegans ortholog of the yeast and mammalian autophagy proteins Atg6/Vps30 and Beclin 1, is essential for development. We demonstrate that BEC-1 is necessary for the function of the class III PI3 kinase LET-512/Vps34, an essential protein required for autophagy, membrane trafficking, and endocytosis. Furthermore, BEC-1 forms a complex with the antiapoptotic protein CED-9/Bcl-2, and its depletion triggers CED-3/Caspase-dependent PCD. Based on our results, we propose that bec-1 represents a link between autophagy and apoptosis, thus supporting the view that the two processes act in concerted manner in the cell death machinery.


Assuntos
Apoptose/genética , Autofagia/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Inativação Gênica , Animais , Western Blotting , Imunoprecipitação , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Proteínas de Transporte Vesicular , Proteína de Morte Celular Associada a bcl/metabolismo
7.
Curr Biol ; 12(17): 1448-61, 2002 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-12225660

RESUMO

BACKGROUND: TOR is a phosphatidylinositol kinase (PIK)-related kinase that controls cell growth and proliferation in response to nutritional cues. We describe a C. elegans TOR homolog (CeTOR) and phenotypes associated with CeTOR deficiency. These phenotypes are compared with the response to starvation and the inactivation of a variety of putative TOR targets. RESULTS: Whether caused by mutation or RNA interference, TOR deficiency results in developmental arrest at mid-to-late L3, which is accompanied by marked gonadal degeneration and a pronounced intestinal cell phenotype. A population of refractile, autofluorescent intestinal vesicles, which take up the lysosomal dye Neutral Red, increases dramatically in size, while the number of normal intestinal vesicles and the intestinal cytoplasmic volume decrease progressively. This is accompanied by an increase in the gut lumen size and a compromise in the intestine's ability to digest and absorb nutrients. CeTOR-deficient larvae exhibit no significant dauer characteristics, but share some features with starved L3 larvae. Notably, however, starved larvae do not have severe intestinal atrophy. Inactivation of C. elegans p70S6K or TAP42 homologs does not reproduce CeTOR deficiency phenotypes, nor does inactivation of C. elegans TIP41, a putative negative regulator of CeTOR function, rescue CeTOR deficiency. In contrast, inactivating the C. elegans eIF-4G homolog and eIF-2 subunits results in developmental arrest accompanied by the appearance of large, refractile intestinal vesicles and severe intestinal atrophy resembling that of CeTOR deficiency. CONCLUSIONS: The developmental arrest and intestinal phenotypes of CeTOR deficiency are due to an inhibition of global mRNA translation. Thus, TOR is a major upstream regulator of overall mRNA translation in C. elegans, as in yeast.


Assuntos
Proteínas de Caenorhabditis elegans/farmacologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool)/farmacologia , Biossíntese de Proteínas , RNA Mensageiro/genética , Adaptação Fisiológica/genética , Alelos , Animais , Atrofia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Fator de Iniciação 2 em Eucariotos/deficiência , Fator de Iniciação 2 em Eucariotos/fisiologia , Fator de Iniciação Eucariótico 4G/deficiência , Fator de Iniciação Eucariótico 4G/fisiologia , Marcação de Genes , Genes Letais , Teste de Complementação Genética , Intestinos/crescimento & desenvolvimento , Intestinos/patologia , Larva , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 70-kDa/deficiência , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/fisiologia , Homologia de Sequência de Aminoácidos , Sirolimo/farmacologia , Especificidade da Espécie , Inanição
8.
Mol Cell Biol ; 24(11): 5016-27, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15143192

RESUMO

Bloom's syndrome (BS) is an autosomal-recessive human disorder caused by mutations in the BS RecQ helicase and is associated with loss of genomic integrity and an increased incidence of cancer. We analyzed the mitotic and the meiotic roles of Caenorhabditis elegans him-6, which we show to encode the ortholog of the human BS gene. Mutations in him-6 result in an enhanced irradiation sensitivity, a partially defective S-phase checkpoint, and in reduced levels of DNA-damage induced apoptosis. Furthermore, him-6 mutants exhibit a decreased frequency of meiotic recombination that is probably due to a defect in the progression of crossover recombination. In mitotically proliferating germ cells, our genetic interaction studies, as well as the assessment of the number of double-strand breaks via RAD-51 foci, reveal a complex regulatory network that is different from the situation in yeast. Although the number of double-strand breaks in him-6 and top-3 single mutants is elevated, the combined depletion of him-6 and top-3 leads to mitotic catastrophe concomitant with a massive increase in the level of double-strand breaks, a phenotype that is completely suppressed by rad-51. him-6 and top-3 are thus needed to maintain low levels of double-strand breaks in normally proliferating germ cells, and both act in partial redundant pathways downstream of rad-51 to prevent mitotic catastrophy. Finally, we show that topoisomerase IIIalpha acts independently during a late stage of meiotic recombination.


Assuntos
Síndrome de Bloom/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/genética , Adenosina Trifosfatases/genética , Animais , Síndrome de Bloom/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose/fisiologia , Rad51 Recombinase , RecQ Helicases , Recombinação Genética/fisiologia
10.
Int J Dev Biol ; 46(1): 143-8, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11902675

RESUMO

Chromatin diminution in the parasitic nematode Ascaris suum represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. At the molecular level, it is a rather complex event including chromosome breakage, new telomere formation and DNA degradation. Analysis of a cloned somatic telomere (pTel1) revealed that it has been newly created during the process of chromatin diminution by the addition of telomeric repeats (TTAGGC)n to a chromosomal breakage site (Müller et al., 1991). However, telomere addition does not occur at a single chromosomal locus, but at many different sites within a short chromosomal region, termed CBR1 (chromosomal breakage region 1). Here we present the cloning and the analysis of 83 different PCR amplified telomere addition sites from the region of CBR1. The lack of any obvious sequence homology shared among them argues for a telomerase-mediated healing process, rather than for a recombinational event. This hypothesis is strongly supported by the existence of 1-6 nucleotides corresponding to and being in frame with the newly added telomeric repeats at almost all of the telomere addition sites. Furthermore, we show that telomeres are not only added to the ends of the retained chromosomal portions, but also to the eliminated part of the chromosomes, which later on become degraded in the cytoplasm. This result suggests that de novo telomere formation during the process of chromatin diminution represents a non-specific process which can heal any broken DNA end.


Assuntos
Ascaris suum/embriologia , Cromatina/metabolismo , DNA de Helmintos/biossíntese , DNA de Helmintos/genética , Regulação da Expressão Gênica no Desenvolvimento , Telômero/ultraestrutura , Animais , Sítios de Ligação , Clonagem Molecular , DNA de Helmintos/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Mol Biochem Parasitol ; 134(1): 53-64, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14747143

RESUMO

Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens represents a rather complex molecular phenomenon that includes chromosomal breakage, DNA degradation and new telomere formation. At a given elimination site, DNA breakage and new telomere addition does not take place at a single chromosomal locus but at many different places within a several kilobase long chromosomal region, referred to as chromosomal breakage region (CBR). Here we describe the cloning and the characterisation of seven CBRs from A. suum and P. univalens and we show that the process has been conserved between the two species. A detailed sequence comparison provides evidence that the sequences of the CBRs and their flanking regions are not directly important for the specification of the elimination sites. Six out of the seven CBRs are conserved between the two nematode species, suggesting that they have already existed in a common ancestor. We present a hypothesis stating that the elimination process ensures the maintenance of a functional somatic genome and concomitantly allows extremely rapid and profound changes in the germ line genome, thereby allowing the development of new germ line specific functions and thus providing a selective advantage for the chromatin eliminating nematodes during further evolution.


Assuntos
Ascaridoidea/genética , Cromatina/metabolismo , Evolução Molecular , Genoma , Animais , Ascaris suum/genética , Quebra Cromossômica , Cromossomos/genética , Cromossomos/metabolismo , Sequência Conservada , DNA de Helmintos/química , DNA de Helmintos/isolamento & purificação , DNA de Helmintos/metabolismo , Rearranjo Gênico , Células Germinativas/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência , Telômero/genética , Telômero/metabolismo
12.
Stem Cell Reports ; 2(4): 547-59, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24749077

RESUMO

Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reprogramação Celular , Proteínas de Ligação a DNA/metabolismo , Células Germinativas/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Células-Tronco/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Divisão Celular/genética , Transformação Celular Neoplásica/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Feminino , Regulação da Expressão Gênica , Células Germinativas/citologia , Histonas/metabolismo , Masculino , Metilação , Mutação , Neoplasias Embrionárias de Células Germinativas/genética , Neurônios/citologia , Neurônios/metabolismo , Oxirredutases N-Desmetilantes/genética , Ligação Proteica , Células-Tronco/citologia
13.
Parasit Vectors ; 7: 428, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25190631

RESUMO

BACKGROUND: Parascaris univalens is an ascaridoid nematode of equids. Little is known about its epidemiology and population genetics in domestic and wild horse populations. PCR-based methods are suited to support studies in these areas, provided that reliable genetic markers are used. Recent studies have shown that mitochondrial (mt) genomic markers are applicable in such methods, but no such markers have been defined for P. univalens. METHODS: Mt genome regions were amplified from total genomic DNA isolated from P. univalens eggs by long-PCR and sequenced using Illumina technology. The mt genome was assembled and annotated using an established bioinformatic pipeline. Amino acid sequences inferred from all protein-encoding genes of the mt genomes were compared with those from other ascaridoid nematodes, and concatenated sequences were subjected to phylogenetic analysis by Bayesian inference. RESULTS: The circular mt genome was 13,920 bp in length and contained two ribosomal RNA, 12 protein-coding and 22 transfer RNA genes, consistent with those of other ascaridoids. Phylogenetic analysis of the concatenated amino acid sequence data for the 12 mt proteins showed that P. univalens was most closely related to Ascaris lumbricoides and A. suum, to the exclusion of other ascaridoids. CONCLUSIONS: This mt genome representing P. univalens now provides a rich source of genetic markers for future studies of the genetics and epidemiology of this parasite and its congener, P. equorum. This focus is significant, given that there is no published information on the specific prevalence and distribution of P. univalens infection in domestic and wild horse populations.


Assuntos
Ascaridoidea/genética , DNA de Helmintos/genética , Genoma Mitocondrial/genética , Sequência de Aminoácidos , Animais , Filogenia
14.
Aging Cell ; 12(6): 1012-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23815345

RESUMO

The evolutionarily conserved nucleosome-remodeling protein Mi2 is involved in transcriptional repression during development in various model systems, plays a role in embryonic patterning and germ line development, and participates in DNA repair and cell cycle progression. It is the catalytic subunit of the nucleosome remodeling and histone deacetylase (NuRD) complex, a key determinant of differentiation in mammalian embryonic stem cells. In addition, the Drosophila and C. elegans Mi2 homologs participate in another complex, the MEC complex, which also plays an important developmental role in these organisms. Here we show a new and unexpected feature of the C. elegans Mi2 homolog, LET-418/Mi2. Lack of LET-418/Mi2 results in longevity and enhanced stress resistance, a feature that we found to be conserved in Drosophila and in Arabidopsis. The fact that depletion of other components of the NuRD and the MEC complexes did not result in longevity suggests that LET-418 may regulate lifespan in a different molecular context. Genetic interaction studies suggest that let-418 could act in the germ-cell-loss pathway, downstream of kri-1 and tcer-1. On the basis of our data and on previous findings showing a role for let-418 during development, we propose that LET-418/Mi2 could be part of a system that drives development and reproduction with concomitant life-reducing effects later in life.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Longevidade/fisiologia , Animais , Arabidopsis/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Sequência Conservada , Drosophila melanogaster , Meio Ambiente , Evolução Molecular , Insulina/metabolismo , Estresse Oxidativo , Ligação Proteica , Análise de Sequência de Proteína , Transdução de Sinais , Estresse Fisiológico/genética , Regulação para Cima
15.
PLoS One ; 5(10): e13681, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21060680

RESUMO

Biochemical purifications from mammalian cells and Xenopus oocytes revealed that vertebrate Mi-2 proteins reside in multisubunit NuRD (Nucleosome Remodeling and Deacetylase) complexes. Since all NuRD subunits are highly conserved in the genomes of C. elegans and Drosophila, it was suggested that NuRD complexes also exist in invertebrates. Recently, a novel dMec complex, composed of dMi-2 and dMEP-1 was identified in Drosophila. The genome of C. elegans encodes two highly homologous Mi-2 orthologues, LET-418 and CHD-3. Here we demonstrate that these proteins define at least three different protein complexes, two distinct NuRD complexes and one MEC complex. The two canonical NuRD complexes share the same core subunits HDA-1/HDAC, LIN-53/RbAp and LIN-40/MTA, but differ in their Mi-2 orthologues LET-418 or CHD-3. LET-418 but not CHD-3, interacts with the Krüppel-like protein MEP-1 in a distinct complex, the MEC complex. Based on microarrays analyses, we propose that MEC constitutes an important LET-418 containing regulatory complex during C. elegans embryonic and early larval development. It is required for the repression of germline potential in somatic cells and acts when blastomeres are still dividing and differentiating. The two NuRD complexes may not be important for the early development, but may act later during postembryonic development. Altogether, our data suggest a considerable complexity in the composition, the developmental function and the tissue-specificity of the different C. elegans Mi-2 complexes.


Assuntos
Adenosina Trifosfatases/fisiologia , Autoantígenos/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Drosophila/fisiologia , Animais , Caenorhabditis elegans/genética , Células Germinativas , Proteínas de Fluorescência Verde/genética
16.
Dev Biol ; 302(2): 661-9, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17084835

RESUMO

The Notch signaling pathway controls growth, differentiation and patterning in divergent animal phyla; in humans, defective Notch signaling has been implicated in cancer, stroke and neurodegenerative disorders. Despite its developmental and medical significance, little is known about the factors that render cells to become competent for Notch signaling. Here we show that during vulval development in the nematode Caenorhabditis elegans the HOX protein LIN-39 and its EXD/PBX-like cofactor CEH-20 are required for LIN-12/Notch-mediated lateral signaling that specifies the 2 degrees vulval cell fate. Inactivation of either lin-39 or ceh-20 resulted in the misspecification of 2 degrees vulval cells and suppressed the multivulva phenotype of lin-12(n137) gain-of-function mutant animals. Furthermore, both LIN-39 and CEH-20 are required for the expression of basal levels of the genes encoding the LIN-12/Notch receptor and one of its ligands in the vulval precursor cells, LAG-2/Delta/Serrate, rendering them competent for the subsequent lin-12/Notch induction events. Our results suggest that the transcription factors LIN-39 and CEH-20, which function at the bottom of the RTK/Ras and Wnt pathways in vulval induction, serve as major integration sites in coordinating and transmitting signals to the LIN-12/Notch cascade to regulate vulval cell fates.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Homeodomínio/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Feminino , Proteínas de Homeodomínio/genética , Larva , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Transdução de Sinais , Fatores de Transcrição/genética , Vulva/crescimento & desenvolvimento , Vulva/fisiologia
17.
Dev Biol ; 306(2): 469-79, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17466968

RESUMO

The fate of the vulval cells in Caenorhabditis elegans is specified, at least in part, through a highly conserved RTK/Ras mediated signaling cascade that negatively regulates the activity of the ETS-like transcription factor LIN-1. The Hox gene lin-39 functions downstream of both, the LIN-3/RTK/Ras pathway and LIN-1 and plays a pivotal role in controlling vulva cell competence and induction. Here we show that LET-418, a C. elegans ortholog of the human NuRD component Mi-2, negatively modulates the activity of lin-39. LET-418 interacts in vivo with specific regions in the promoter of lin-39 and this interaction depends on LIN-1. Our data provide evidence for a model in which LIN-1 recruits LET-418/Mi-2 as co-repressor to the promoter of lin-39, thereby restricting its activity to the basal levels required in the vulva precursor cells (VPCs) for normal vulval development. Thus, our data suggest that the interaction between LIN-1 and LET-418/Mi-2 may link RTK/Ras signaling with chromatin remodeling and gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Vulva/embriologia , Animais , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Feminino , Modelos Genéticos , Mutação , Fenótipo , Interferência de RNA
18.
EMBO Rep ; 3(3): 235-41, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850401

RESUMO

Proteins of the highly conserved heterochromatin protein 1 (HP1) family have been found to function in the dynamic organization of nuclear architecture and in gene regulation throughout the eukaryotic kingdom. In addition to being key players in heterochromatin-mediated gene silencing, HP1 proteins may also contribute to the transcriptional repression of euchromatic genes via the recruitment to specific promoters. To investigate the role played by these different activities in specific developmental pathways, we identified HP1 homologues in the genome of Caenorhabditis elegans and used RNA-mediated interference to study their function. We show that one of the homologues, HPL-2, is required for the formation of a functional germline and for the development of the vulva by acting in an Rb-related pathway. We suggest that, by acting as repressors of gene expression, HP1 proteins may fulfil specific functions in both somatic and germline differentiation processes throughout development.


Assuntos
Caenorhabditis elegans/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Homólogo 5 da Proteína Cromobox , Feminino , Células Germinativas/crescimento & desenvolvimento , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Vulva/embriologia
19.
Dev Biol ; 259(1): 137-49, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12812794

RESUMO

Hox genes are transcriptional regulators of metazoan body regionalization along the anteroposterior axis that act by specifying positional identity in differentiating cells. ceh-13, the labial orthologue in Caenorhabditis elegans, is expressed both during embryogenesis and post- embryonic development. Using GFP reporter analysis and immunocytochemistry, we discovered a spatiotemporal pattern of gene expression in the male tail during the L3 and L4 larval stages that is TGF-beta pathway-dependent. Analysis of reporter activity in transgenic animals identified a distinct promoter region driving male tail-specific ceh-13 expression. We also report the interspecies conservation of sequence motifs within this region and speculate that, in the course of evolutionary diversification, ceh-13 may have acquired new functionality while conserving its homeotic role.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Proteínas de Homeodomínio/fisiologia , Cauda/embriologia , Fator de Crescimento Transformador beta , Animais , Sequência de Bases , Sequência Conservada , Elementos Facilitadores Genéticos , Masculino , Dados de Sequência Molecular , Morfogênese , Neuropeptídeos/fisiologia , Regiões Promotoras Genéticas , Reto/embriologia
20.
Dev Biol ; 242(2): 96-108, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11820809

RESUMO

Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Animais , Sequência de Bases , Caenorhabditis elegans/embriologia , Primers do DNA , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Ensaio de Desvio de Mobilidade Eletroforética , Elementos Facilitadores Genéticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa