Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 16(10)2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257422

RESUMO

Collagen from a marine resource is believed to have more potential activity in bone tissue engineering and their bioactivity depends on biochemical and structural properties. Considering the above concept, pepsin soluble collagen (PSC) and acid soluble collagen (ASC) from blue shark (Prionace glauca) skin were extracted and its biochemical and osteogenic properties were investigated. The hydroxyproline content was higher in PSC than ASC and the purified collagens contained three distinct bands α1, α2, and ß dimer. The purity of collagen was confirmed by the RP-HPLC profile and the thermogravimetric data showed a two-step thermal degradation pattern. ASC had a sharp decline in viscosity at 20⁻30 °C. Scanning electron microscope (SEM) images revealed the fibrillar network structure of collagens. Proliferation rates of the differentiated mouse bone marrow-mesenchymal stem (dMBMS) and differentiated osteoblastic (dMC3T3E1) cells were increased in collagen treated groups rather than the controls and the effect was dose-dependent, which was further supported by higher osteogenic protein and mRNA expression in collagen treated bone cells. Among two collagens, PSC had significantly increased dMBMS cell proliferation and this was materialized through increasing RUNX2 and collagen-I expression in bone cells. Accordingly, the collagens from blue shark skin with excellent biochemical and osteogenic properties could be a suitable biomaterial for therapeutic application.


Assuntos
Osso e Ossos/metabolismo , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Tubarões , Engenharia Tecidual/métodos , Animais , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Colágeno Tipo I/química , Colágeno Tipo I/isolamento & purificação , Colágeno Tipo I/ultraestrutura , Células-Tronco Mesenquimais , Camundongos , Microscopia Eletrônica de Varredura , Osteoblastos , Osteogênese/efeitos dos fármacos , Pepsina A/química , Pele/química , Solubilidade , Viscosidade
2.
J Oleo Sci ; 67(7): 813-822, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877221

RESUMO

Volatile compounds and quality changes of bitter apricot (Armeniaca sibirica L.) kernel oil (AKO) with different roasting conditions were determined. Bitter apricot kernels were roasted at 120, 130, 140 and 150°C for 15 min. Unroasted bitter apricot kernel oil was used as the control. Quality indicators included color, acid value and peroxide value, fatty acids, total phenols and oxidative stability. Peroxide values of the tested oils were 0.46-0.82 meq/kg, acid values were 0.60-1.40 mg KOH/g, and total phenol contents were 54.1-71.5 µg GAE/g. Oleic acid was the major fatty acid, followed by linoleic, palmitic, stearic and palmitoleic acids. Roasting increased the oxidative stability of bitter AKO. Volatile compounds were tentatively identified and semi-quantified. Among the 53 volatiles identified, benzaldehyde and benzyl alcohol were the major components. These two aroma compounds increased significantly during roasting and contributed sweet and almond flavors. Pyrazines were also prevalent and significantly increased with roasting. Sensory evaluation showed that roasted, nutty, sweet and oily aromas increased as roasting temperature increased.Practical applications: Bitter apricot kernels cannot be consumed directly, thus it is potentially beneficial to find uses for them, especially in China where bitter apricot processing is a significant industry. Roasted bitter AKO with a pleasant aroma could be prepared and might find use as an edible oil. The roasting process gave the bitter AKO a pleasant flavor. This study provided preliminary information on production parameters and potential quality control parameters.


Assuntos
Culinária , Temperatura Alta , Óleos de Plantas/química , Prunus armeniaca/química , Sementes/química , Benzaldeídos/análise , Álcool Benzílico/análise , Fenômenos Químicos , Ácidos Graxos , Qualidade dos Alimentos , Peróxidos/análise , Fenóis/análise , Pirazinas/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa