RESUMO
Passion fruit (Passiflora edulis) possesses a complex aroma and is widely grown in tropical and subtropical areas. Here, we conducted the de novo assembly, annotation, and comparison of PPF (P. edulis Sims) and YPF (P. edulis f. flavicarpa) reference genomes using PacBio, Illumina, and Hi-C technologies. Notably, we discovered evidence of recent whole-genome duplication events in P. edulis genomes. Comparative analysis revealed 7.6â¼8.1 million single nucleotide polymorphisms, 1 million insertions/deletions, and over 142â Mb presence/absence variations among different P. edulis genomes. During the ripening of yellow passion fruit, metabolites related to flavor, aroma, and color were substantially accumulated or changed. Through joint analysis of genomic variations, differentially expressed genes, and accumulated metabolites, we explored candidate genes associated with flavor, aroma, and color distinctions. Flavonoid biosynthesis pathways, anthocyanin biosynthesis pathways, and related metabolites are pivotal factors affecting the coloration of passion fruit, and terpenoid metabolites accumulated more in PPF. Finally, by heterologous expression in yeast (Saccharomyces cerevisiae), we functionally characterized 12 terpene synthases. Our findings revealed that certain TPS homologs in both YPF and PPF varieties produce identical terpene products, while others yield distinct compounds or even lose their functionality. These discoveries revealed the genetic and metabolic basis of unique characteristics in aroma and flavor between the 2 passion fruit varieties. This study provides resources for better understanding the genome architecture and accelerating genetic improvement of passion fruits.
Assuntos
Frutas , Passiflora , Frutas/genética , Odorantes , Passiflora/genética , Passiflora/metabolismo , Multiômica , Terpenos/metabolismoRESUMO
Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.
Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Resposta ao Choque Frio/genética , Morte Celular/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Pectin is one of the constituents of the cell wall, distributed in the primary cell wall and middle lamella, affecting the rheological properties and the cell wall stickiness. Pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) are the most important factors for modifying methyl esterification. In this study, 45 PMEI genes from rice (Oryza sativa L.) were screened by bioinformatics tools, and their structure, motifs, cis-acting elements in the promoter region, chromosomal distribution, gene duplication, and phylogenetic relationship were analyzed. Furthermore, CRISPR/Cas9 was used to edit the OsPMEI12 (LOC_Os03G01020) and two mutant pmei12 lines were obtained to explore the functions of OsPMEI in plant growth and development, and under cadmium (Cd) stress. Compared to wild type (WT) Nipponbare, the second inverted internodes of the mutant plants shortened significantly, resulting in the reduction in plant height at mature stage. The seed setting rate, and fresh and dry weights of the mutants were also decreased in mutant plants. In addition, the pectin methylation of pmei12 lines is decreased as expected, and the pectin content of the cell wall increased at both seedling and maturity stages; however, the cellulose and hemicellulose increased only at seedling stage. Interestingly, the growth of the pmei12 lines was better than the WT in both normal conditions and under two phytohormone (GA3 and NAA) treatments at seedling stage. Under Cd stress, the fresh and dry weights were increased in pmei12 lines. These results indicated that OsPMEI12 was involved in the regulation of methyl esterification during growth, affected cell wall composition and agronomic traits, and might play an important role in responses to phytohormones and stress.
Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cádmio/metabolismo , Filogenia , Sistemas CRISPR-Cas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Pectinas/metabolismo , Plantas/metabolismo , Plântula/genética , Plântula/metabolismoRESUMO
Enzymes with fructan exohydrolase (FEH) activity are present not only in fructan-synthesizing species but also in non-fructan plants. This has led to speculation about their functions in non-fructan species. Here, a cell wall invertase-related Zm-6&1-FEH2 with no "classical" invertase motif was identified in maize. Following heterologous expression in Pichia pastoris and in Nicotiana benthamiana leaves, the enzyme activity of recombinant Zm-6&1-FEH2 displays substrate specificity with respect to inulin and levan. Subcellular localization showed Zm-6&1-FEH2 exclusively localized in the apoplast, and its expression profile was strongly dependent on plant development and in response to drought and abscisic acid. Furthermore, formation of 1-kestotriose, an oligofructan, was detected in vivo and in vitro and could be hydrolyzed by Zm-6&1-FEH2. In summary, these results support that Zm-6&1-FEH2 enzyme from maize can degrade both inulin-type and levan-type fructans, and the implications of the co-existence of Zm-6&1-FEH2 and 1-kestotriose are discussed.
Assuntos
Frutanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Inulina/metabolismo , Trissacarídeos/metabolismo , Zea mays/metabolismo , Glicosídeo Hidrolases/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/crescimento & desenvolvimentoRESUMO
An increasing body of research has underscored the significant impact of non-consumptive effects on the dynamics of prey pests, encompassing growth, development, reproduction, and metabolism across various vertebrate and invertebrate taxa, rivaling the influence of consumption effects. In our investigation, we delved into the non-consumptive effects exerted by the natural predatory enemy Harmonia axyridis on the reproductive capacity and metabolism of Spodoptera frugiperda adults. Our findings revealed a substantial decrease in the reproductive ability of S. frugiperda adults when exposed to the non-consumptive effects of H. axyridis. Concurrently, we observed an elevation in hydrogen peroxide (H2O2) content and the activities of antioxidant enzymes such as superoxide dismutases (SODs), catalases (CATs), and peroxidases (PODs). Furthermore, notable alterations were detected in energy metabolism, characterized by heightened triglyceride levels and diminished glycogen and trehalose concentrations. These outcomes underscored the adaptive response of the pest aimed at mitigating non-consumptive adverse effects by augmenting antioxidant enzyme activity to counteract oxidative stress and minimize cellular damage. Nonetheless, this defensive mechanism entails a significant expenditure of energy resources, resulting in shifts in energy utilization. Elevated triglyceride levels and reduced glycogen and trehalose concentrations diminish available resources for reproductive processes, such as egg laying, ultimately culminating in decreased fecundity. This study contributes novel insights into the non-consumptive effects observed in insects, while also furnishing valuable insights into the mechanisms underlying insect stress responses.
RESUMO
The exploitation of mineral resources is very important for economic development, but disorderly exploitation poses a serious threat to the ecological environment. However, investigations on the advantages of plant species and environmental pollution in polluted mining areas are limited. Thus, a survey was conducted to evaluate the impacts of abandoned mines on the surrounding ecological environment along rivers in polluted areas and to determine the Arsenic (As) pollution status in soil and plants. The results showed that the soil and vegetation along the river in the survey area were seriously polluted by As. The total As content of the 15 samples was significantly greater than the national soil background value (GB 15618-2018), and degree of pollution was nonlinearly related to the distance from the mine source, R2 = 0.9844. B. bipinnata, P. vittata and B. nivea were predominant with degrees of dominance of 0.01-0.33, 0.05-0.11, and 0.06-0.14 respectively. The As enrichment capacities of Juncus and P. vittata were significantly greater than those of the other plants, while the bioaccumulation factors (BCFs) were 21.81 and 7.04, respectively.
Assuntos
Arsênio , Monitoramento Ambiental , Ouro , Mineração , Plantas , Rios , Poluentes do Solo , Solo , Arsênio/análise , Poluentes do Solo/análise , China , Rios/química , Solo/química , Bioacumulação , Poluição Ambiental/estatística & dados numéricosRESUMO
Endocrine-disrupting chemicals (EDCs) are pervasive in the environment, prompting significant public concern regarding human exposure to these pollutants. In this study, we analyzed the levels of various endocrine-disrupting compounds, including parabens (PBs), benzophenones (BzPs), triclocarban (TCC) and triclosan (TCS), across 565 urine samples collected from residents of South China. All 11 target chemicals were detected at relatively high frequencies (41-100%), with the most prevalent ones being 3,4-dihydroxybenzoic acid (5.39 ng/mL), methyl-paraben (5.12 ng/mL), ethyl-paraben (3.11 ng/mL) and triclosan (0.978 ng/mL). PBs emerged as the most predominant group with a median concentration of 32.2 ng/mL, followed by TCs (sum of TCC and TCS, 0.998 ng/mL) and BzPs (0.211 ng/mL). Notably, urinary concentrations of PBs in adults were significantly higher (p < 0.01) compared to children, while BzPs and TCs were elevated in children (p < 0.001). The increased presence of BzPs and TCs in children is a cause for concern, given their heightened sensitivity and vulnerability to chemicals. Significant correlations were found between urinary target compounds and demographic factors, including gender, age and body mass index. Specifically, females, younger adults (18 ≤ age ≤ 35) and individuals with under/normal weight (16 ≤ BMI ≤ 23.9) were found to have higher exposure levels to EDCs, as indicated by the median values of their estimated daily intakes. Despite these higher levels still being lower than the acceptable daily intake thresholds, the health risks stemming from simultaneous exposure to these EDCs must not be overlooked.
Assuntos
Benzofenonas , Carbanilidas , Disruptores Endócrinos , Exposição Ambiental , Poluentes Ambientais , Parabenos , Triclosan , Humanos , Carbanilidas/urina , Parabenos/análise , Triclosan/urina , Criança , China , Benzofenonas/urina , Adulto , Feminino , Masculino , Disruptores Endócrinos/urina , Poluentes Ambientais/urina , Exposição Ambiental/estatística & dados numéricos , Exposição Ambiental/análise , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Pré-EscolarRESUMO
Cd accumulation in rice-cultivated soils across China is a major problem that needs to be tackled. A plot experiment was carried out using heavy metal (HM) hyperaccumulators Amaranthus hypochondriacus L. and Perilla frutescens (L.) Britt. intercropped with low-accumulation rice to obtain safe edible rice while reducing the soil Cd concentration. It was found that Cd concentration in soil was decreased by 7.43 and 2.86% under rice intercropped with Amaranthus hypochondriacus L. and Perilla frutescens (L.) Britt., respectively, compared to single cropped rice. In addition, enhanced effects were noted under the combination of Amaranthus hypochondriacus L., Perilla frutescens (L.) Britt, and rice in which a 20.35% decrease in soil Cd content was recorded compared to single-cultivated rice soil. In addition, the available Cd in soil was reduced by 4.00 and 5.00% under rice/Amaranthus and rice/Perilla, respectively, and 12.00% under rice/Amaranthus/Perilla mixed culture. Moreover, the concentration of Cd in various parts of rice was under permissible limits. However, rice biomass was decreased by the presence of hyperaccumulators. This study suggests that combining HM hyperaccumulator plants and low-accumulation rice provides efficient Cd extraction results and could be a crucial option for restoring Cd-contaminated soil without reducing rice production.
RESUMO
Recently, there has been increasing concern regarding the emergence of bisphenol S analogues (BPSs) due to their potential toxicity. However, their exposure levels and associated health risks in susceptible populations remain unknown. In our study, we analyzed bisphenol A (BPA), along with 11 common BPA analogues (BPAs), and nine emerging BPSs in urine samples collected from 381 pregnant women in South China. All nine BPSs were first detected in pregnant women's urine. In addition to BPA, two BPAs, three BPSs including Diphenylsulfone (DPS), Bis(phenylsulfonyl)phenol (DBSP) and Bis(3-allyl-4-hydroxyphenyl)sulfone (TGSA), were identified as the predominant bisphenols, with detection frequencies ranging from 53-100 %. BPA still exhibited the highest median concentration at 0.624 ng/mL, followed by DPS (0.169 ng/mL), BPS (0.063 ng/mL) and DBSP (0.023 ng/mL). Importantly, mothers with higher levels of BPA, DBSP, DPS, and TGSA in their urine are statistically more likely to give birth to premature infants with shorter lengths at birth or smaller head circumference (p < 0.05). Although the median exposure to 21 bisphenols did not exceed the tolerable daily intake (TDI) of BPA, it did surpass the recently proposed BPA TDI (0.2 ng/kg bw/day) by a factor ranging from 1.1-99 times. This study signifies the first report unveiling the prevalence of multiple bisphenols, particularly emerging BPSs, in the urine of pregnant women in South China.
Assuntos
Fenóis , Sulfonas , Humanos , Feminino , Fenóis/urina , Fenóis/toxicidade , Gravidez , Sulfonas/toxicidade , China , Adulto , Adulto Jovem , Compostos Benzidrílicos/urina , Exposição Materna/efeitos adversos , Poluentes Ambientais/urina , Poluentes Ambientais/toxicidadeRESUMO
Passion fruit is a valued tropical fruit crop that faces environment-related growth strains. TCP genes are important for both growth modulation and stress prevention in plants. Herein, we systematically analyzed the TCP gene family in passion fruit, recognizing 30 members. Genes exhibiting closer phylogenetic relationships exhibited similar protein and gene structures. Gene members of the TCP family showed developmental-stage- or tissue-specific expression profiles during the passion fruit life cycle. Transcriptome data also demonstrated that many PeTCPs showed induced expression in response to hormonal treatments and cold, heat, and salt stress. Based on transcriptomics data, eight candidate genes were chosen for preferential gene expression confirmation under cold stress conditions. The qRT-PCR assays suggested PeTCP15/16/17/19/23 upregulation, while PeTCP1/11/25 downregulation after cold stress. Additionally, TCP19/20/29/30 exhibited in silico binding with cold-stress-related miRNA319s. GFP subcellular localization assays exhibited PeTCP19/1 were localized at the nucleus. This study will aid in the establishment of novel germplasm, as well as the further investigation of the roles of PeTCPs and their cold stress resistance characteristics.
RESUMO
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
RESUMO
Banana anthracnose, caused by Colletotrichum fructicola, significantly reduced the postharvest fruit quality. Employing biocontrol strategies offers a sustainable approach to enhance agricultural practices. The Burkholderia sp. strain BX1 hinders the growth and appressorium formation of C. fructicola, and its sterile filtrate lowers the anthracnose incidence while preserving the fruit quality. Scanning electron microscopy and genomic analyses confirmed BX1 as Burkholderia pyrrocinia. AntiSMASH analysis identified three siderophores with high similarity, and improved MALDI-TOF IMS confirmed the presence of the siderophore pyochelin. Furthermore, the BX1 filtrate suppressed the expression of virulence genes in C. fructicola and induced the expression of disease resistance genes in banana. However, the presence of 80 µM iron ions notably mitigated BX1's inhibitory effects and reversed the changes in related gene expression. These results underscore BX1's robust efficacy as a biocontrol agent in managing banana anthracnose, highlight the effective antifungal compounds, and elucidate the influence of environmental factors on biocontrol effectiveness.
Assuntos
Colletotrichum , Frutas , Musa , Doenças das Plantas , Sideróforos , Musa/microbiologia , Colletotrichum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Sideróforos/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Burkholderia/fisiologia , Agentes de Controle Biológico/farmacologiaRESUMO
Glycoside hydrolases (GHs), enzymes that break down glycosidic bonds in carbohydrates and between carbohydrates and non-carbohydrates, are prevalent in plants, animals, microorganisms, and other organisms. The tomato is a significant crop that contains the GH17 gene family. However, its role in tomatoes has yet to be fully investigated. In this study, we identified 43 GH17 genes from the tomato genome, distributed unevenly across 12 chromosomes. We further analyzed their gene structure, phylogenetic relationships, promoter elements, and expression patterns. The promoter element analysis indicated their potential roles in response to biotic and abiotic stresses as well as phytohormone effects on growth and development. The expression studies across different tomato tissues revealed that 10 genes were specifically expressed in floral organs, with SlA6 prominently expressed early during bud formation. By using CRISPR/Cas9 gene-editing technology, SlA6 knockout plants were generated. Phenotypic characterization showed that pollen viability, pollen tube germination, fruit weight, and seed number were significantly reduced in the Sla6 mutant, but the soluble solids content (TSS) was significantly higher in the Sla6 mutant, suggesting that SlA6 affects pollen development and fruit quality.
RESUMO
Citrus fruits are cultivated around the world, and they face drought stress frequently during their growth and development. Previous studies showed that citrus plants biosynthesized flavonoid compounds in response to abiotic stress. In this study, we have quantified 37 flavonoid compounds from the leaves of three distinct citrus species including sour orange (drought-tolerant), pummelo 'Majia you pummelo' (drought-sensitive), and lemon (drought-sensitive). The 37 flavonoids consisted of 12 flavones, 10 flavonols, 6 flavanones, 5 isoflavanones, and 1 each for chalcone, flavanol, flavanonol, and flavone glycoside. Drought stress differentially altered the flavonoid metabolism in drought-tolerant and drought-sensitive citrus species. The kaempferol 3-neohesperidoside was 17-fold higher in sour orange (124.41 nmol/L) after 18 days of drought stress than lemon (7.33 nmol/L). In sour orange, neohesperidin (69.49 nmol/L) was 1,407- and 37-fold higher than pummelo and lemon, respectively. In sour orange, some flavonoids were significantly increased, such as vitexin, neohesperidin, cynaroside, hyperoside, genistin, kaempferol 3-neohesperidoside, eriocitrin, and luteolin, in response to drought stress, whereas in lemon, these flavonoids were significantly decreased or not altered significantly in response to drought stress. Moreover, the total contents of flavonoids and antioxidant activity were increased in sour orange as compared with pummelo and lemon. The genes associated with flavonoid biosynthesis (PAL, CHI, FLS, GT1, F3H, F3'M, C4H, 4CL, FLS, FG2, FG3, and CYP81E1) were more highly expressed in sour orange leaves than in pummelo and lemon after drought stress. These outcomes showed that pummelo and lemon failed to biosynthesize antioxidant flavonoids to cope with the prolonged drought stress, whereas the sour orange biosynthesized fortified flavonoid compounds with increased antioxidant activity to detoxify the harmful effects of reactive oxygen species produced during drought stress.
RESUMO
Cultivation of the biofuel plant, hybrid giant Napier grass (HGN), in saline soil was investigated in a greenhouse study. The results show that HGN is a salt tolerant plant which can flourish in saline soil and product a large amount of biomass. The extensively developed fibrous root system of HGN plays a significant role in the uptake of sodium from saline soil so that both soil salinity and pH are reduced. Fibrous roots of HGN are well distributed in the soil below the surface, where the metabolism of the root system produces a gradient at the depth between 10 and 20 cm in soil salinity, pH and organic content. The degradation of the HGN by the biota within the soil results in an increase in nutrients and improved soil quality. The experimental results suggest that HGN adapts to saline soil, which is promising for phytoremediation of such soils. Additional advantages of HGN include the large biomass produced which can be used for renewable energy generation.
Assuntos
Hibridização Genética , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/crescimento & desenvolvimento , Salinidade , Cloreto de Sódio/farmacologia , Solo/química , Biodegradação Ambiental/efeitos dos fármacos , Carbono , Hibridização Genética/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/efeitos dos fármacos , Poaceae/metabolismoRESUMO
Co-cropping is an eco-friendly strategy to improve the phytoremediation capacity of plants growing in soils contaminated with heavy metals such as cadmium (Cd). This study was conducted to investigate the effects of co-cropping Indian mustard (Brassicajuncea) and silage maize (Zeamays) and applying peat on the phytoremediation of a Cd-contaminated acid paddy soil via characterizing plant growth and Cd uptake in pot experiments. There were six planting patterns (Control: no plants; MI-2 and MI-4: mono-cropping of Indian mustard at low and high densities, respectively; MS: mono-cropping of silage maize; CIS-2 and CIS-4: co-cropping of Indian mustard at low and high densities with silage maize, respectively) and two application rates of peat (NP: 0; WP: 30 g kg-1). When Indian mustard and silage maize were co-cropped, the shoot biomass of Indian mustard plants per pot was significantly (p < 0.05) lower than that obtained in the mono-cropping systems, with a substantial reduction (55-72%) in the same plant density group. The shoot biomass of silage maize plants in the mono-cropping systems did not differ significantly from that in the co-cropping systems regardless of the density of Indian mustard. The growth-promoting effect of the peat application was more pronounced in Indian mustard than silage maize. Under the low density of Indian mustard, the co-cropping systems significantly (p < 0.05) decreased Cd uptake by silage maize. Additionally, soil amendment with peat significantly (p < 0.05) increased shoot Cd removal rate and Cd translocation factor value in the co-cropping systems. Taken together, the results demonstrated that silage maize should be co-cropped with Indian mustard at an appropriate density in Cd-polluted soils to achieve simultaneous remediation of Cd-contaminated soils (via Indian mustard) and production of crops (here, silage maize). Peat application was shown to promote the removal of Cd from soil and translocation of Cd into shoots and could contribute to enhanced phytoremediation of Cd-contaminated acid paddy soil.