Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(33): 17396-17404, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110135

RESUMO

Adsorption-desorption performance, electronic properties, and sensitivity of O-defective g-ZnO (ODZO) gas sensors for volatile organic compounds (VOCs) are calculated using density functional theory and nonequilibrium Green's formalism. The VOCs are CH2O, CH4, C2H4O, CH4O, and C2H6. The intrinsic g-ZnO (IZO) and ODZO exhibit strong adsorption capabilities for C2H4O and CH4O. The IZO (0.118 e) and ODZO (0.059 e), which act as electron donors, exhibit the highest charge transfer to CH2O, indicating a strong interaction. The VOCs adsorption on the IZO and ODZO systems maintain nonmagnetic semiconductor characteristics. Additionally, the introduction of an O-defect causes the adsorption energy and charge transfer amount of ODZO to show an overall decrease, indicating better desorption ability. Notably, the sensitivity results show that the ODZO gas sensors exhibit high sensitivity to CH2O (39.3%), C2H4O (29.0%), and CH4O (19.6%) at a voltage of 2.6 V, consistent with the adsorption-desorption performance and electronic properties.

2.
Phys Chem Chem Phys ; 26(6): 5569-5578, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284264

RESUMO

The g-ZnO/Si9C15 heterojunction is designed, and its stability, electronic properties and photo-electro catalytic properties, and the impact of biaxial strain on the electronic and photocatalytic properties are investigated. The g-ZnO/Si9C15 heterojunction has a staggered (type-II) band structure (band gap is 1.770 eV), following the S-scheme mechanism. A high electron mobility of 5.113 × 103 cm2 V-1 s-1 and hole mobility of 3.324 × 104 cm2 V-1 s-1 are obtained in the zigzag and armchair directions, respectively. Suitable oxidation and reduction potentials are obtained such that photocatalytic water decomposition can occur at pH = 0-14, and the corrected solar to hydrogen (STH) efficiency is up to 35.4%. The absorption of visible light is enhanced, and the power conversion efficiency (PCE) is 15.1%. The electro-catalytic hydrogen evolution reaction (HER) is more likely to occur at the Si9C15 interface with a low over-voltage of 0.190 V. Under biaxial strain, due to the controllable band structure, the corrected STH efficiency and PCE increase to 42.7% and 16.7%, respectively. The heterojunction shows potential value in the field of high-efficiency solar devices and catalytic materials for water splitting.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa