Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(33): e202205033, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35604407

RESUMO

Nano- and micromaterials with anisotropic photoluminescence and photon transport have widespread application prospects in quantum optics, optoelectronics, and displays. But the nature of the polarization information of the out-coupled light, with respect to that of the source luminescence, has never been explored in active optical-waveguiding organic crystals. Herein, three different modes (selective, anisotropic, and consistent) of polarized-photon out-coupling are proposed and successfully implemented in a set of 2D organic microcrystals with highly linearly-polarized luminescence. It is found that the polarization direction and degree of the luminescence out-coupled through different waveguiding channels can either be essentially retained or distinctly changed with respect to those of the original luminescence, depending on the molecular arrangement and the orientation of transition dipole moments of the crystal. This work demonstrates the promising potential of 2D emissive microcrystals in multi-channel polarized photon transport.

2.
Inorg Chem ; 60(19): 14810-14819, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34546744

RESUMO

Three tris-heteroleptic mononuclear Ru(II) complexes with dual fluorescence and phosphorescence-[Ru(dpma)(bpy)(phen)]2+ (12+), [Ru(dpma)(bpy)(dppz)]2+ (22+), and [Ru(dpma)(phen)(dppz)]2+ (32+)-have been designed and used as ratiometric light-response probes for DNA, where dpma is di(pyrid-2-yl)(methyl)-amine, bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Single crystals of complex 2(PF6)2 have been obtained and studied by X-ray analysis. The interactions of these complexes with different DNAs are investigated by means of spectroscopic methods, viscosity measurements, and molecular modeling. In the presence of calf thymus DNA, complexes 2(PF6)2 and 3(PF6)2 show the emergence of a new lower-energy phosphorescence emission band; meanwhile, the higher-energy fluorescence emission band is essentially unchanged, functioning as an intrinsic internal reference. These two complexes exhibit stronger preference for calf thymus DNA over single-strand DNA (d(A)16 and d(C)16). In contrast, no binding interaction between 1(PF6)2 and calf thymus DNA is observed. The intrinsic binding constants (Kb) of 2(PF6)2 and 3(PF6)2 with calf thymus DNA are determined to be (1.4 ± 0.4) × 105 and (9.5 ± 0.15) × 104 M-1, respectively. In addition, these spectroscopic results are compared with those of the prototype complex [Ru(bpy)2(dppz)]2+ (42+), and density functional theory and time-dependent density functional theory calculations are employed to elucidate these experimental findings.


Assuntos
Complexos de Coordenação/química , DNA/química , Rutênio/química , Animais , Bovinos , Estrutura Molecular
3.
Nat Commun ; 15(1): 4402, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782924

RESUMO

Endowing the widely-used synthetic polymer nylon with high-performance organic room-temperature phosphorescence would produce advanced materials with a great potential for applications in daily life and industry. One key to achieving this goal is to find a suitable organic luminophore that can access the triplet excited state with the aid of the nylon matrix by controlling the matrix-luminophore interaction. Herein we report highly-efficient room-temperature phosphorescence nylons by doping cyano-substituted benzimidazole derivatives into the nylon 6 matrix. These homogeneously doped materials show ultralong phosphorescence lifetimes of up to 1.5 s and high phosphorescence quantum efficiency of up to 48.3% at the same time. The synergistic effect of the homogeneous dopant distribution via hydrogen bonding interaction, the rigid environment of the matrix polymer, and the potential energy transfer between doped luminophores and nylon is important for achieving the high-performance room-temperature phosphorescence, as supported by combined experimental and theoretical results with control compounds and various polymeric matrices. One-dimensional optical fibers are prepared from these doped room-temperature phosphorescence nylons that can transport both blue fluorescent and green afterglow photonic signals across the millimeter distance without significant optical attenuation. The potential applications of these phosphorescent materials in dual information encryption and rewritable recording are illustrated.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 199: 110-116, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574312

RESUMO

In this work a unique hetero-metallic alkaline earth-transition Ba-Cd luminescent micro-porous metal-organic framework {[BaCd(µ6-tp)1.5(µ2-Cl)(H2O) (DMF)2]·0.75H2O}n (H2tp=terephthalic acid) (1) has been prepared under solvo-thermal conditions. In 1 infinite 1D {Ba-X-Cd} (X=O, Cl) inorganic chains are linked via these full de-pronated tp2- ligands forming a unique 3D I1O2 type micro-porous coordination framework. PXRD patterns of 1 have been determined confirming pure phases of 1. Luminescence investigations suggested that 1 exhibits highly selective and sensitive sensing for trace amounts of benzaldehyde in ethanol, which provides a facile method for real-time detection of benzaldehyde. Meanwhile 1 also exhibits highly selective and sensitive sensing for Cu2+ over other cations with high quenching efficiency Ksv value 1.15×104L·mol-1. As far as we know, 1 represents the first example of alkaline earth-transition hetero-metallic Ba-Cd micro-porous coordination framework as bi-functional luminescent probes for Cu2+ and benzaldehyde.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa